Rotational integral geometry of tensor valuations
暂无分享,去创建一个
[1] Daniel Hug,et al. Integral geometry of tensor valuations , 2008, Adv. Appl. Math..
[2] S. Alesker. Description of Continuous Isometry Covariant Valuations on Convex Sets , 1999 .
[3] R. Ambartzumian. Stochastic and integral geometry , 1987 .
[4] C K Poh,et al. Magnetic scattering effects in two-band superconductor: the ferromagnetic dopants in MgB2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[5] Claus Beisbart,et al. Vector- und Tensor-Valued Descriptors for Spatial Patterns , 2002 .
[6] E. B. Vedel Jensen,et al. Closed form of the rotational Crofton formula , 2012 .
[7] R. Schneider,et al. The space of isometry covariant tensor valuations , 2007 .
[8] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[9] K. Mecke,et al. Tensorial density functional theory for non-spherical hard-body fluids , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] Richard J. Prokop,et al. A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..
[11] Eva B. Vedel Jensen,et al. A rotational integral formula for intrinsic volumes , 2008, Adv. Appl. Math..
[12] D. Hug,et al. Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures , 2011, Advanced materials.
[13] Continuous rotation invariant valuations on convex sets , 1999, math/9905204.
[14] K. Mecke,et al. Tensorial Minkowski functionals and anisotropy measures for planar patterns , 2010, Journal of microscopy.
[15] H. Wagner,et al. Extended morphometric analysis of neuronal cells with Minkowski valuations , 2005, cond-mat/0507648.
[16] Eva B. Vedel Jensen,et al. Expressing intrinsic volumes as rotational integrals , 2010, Adv. Appl. Math..