On the Most Powerful Chemical Traps for Bis(methoxycarbonyl)carbene (=2‐Methoxy‐1‐(methoxycarbonyl)‐2‐oxoethylidene)

The efficiency and validity of different chemical substrates for trapping bis(methoxycarbonyl)carbene (=2-methoxy-1-(methoxycarbonyl)-2-oxoethylidene; 1) is dependent on the conditions of carbene generation. On conventional photolysis of dimethyldiazomalonate (=2-diazopropanedioic acid dimethyl ester; 2) by long-wave UV light (through a Pyrex filter, λ>290 nm), the most powerful trap for carbene 1 in the series of substrates Me2S, MeOH, cyclohexane, and pyridine is Me2S (with an efficiency ratio of ca. 6 : 4 : 2 : 1, resp.). When short-wave decomposition of diazomalonate 2 is employed (through a quartz filter, λ>210 nm), more reliable and useful chemical traps for bis(methoxycarbonyl)carbene (1) are pyridine and cyclohexane, whose adducts with 1 are rather stable under short-wave-irradiation conditions. Application of alcohols for the trapping of 1 proves to be preferential when simultaneous monitoring of carbene and oxoketene formation during photolysis is necessary.

[1]  E. Tippmann,et al.  Generation and Characterization of New Fluoro-Substituted Carbenes , 2004 .

[2]  E. Tippmann,et al.  Laser Flash Photolysis Study of Chlorofluorocarbene , 2003 .

[3]  W. Kirmse 100 Years of the Wolff Rearrangement , 2002 .

[4]  M. Platz Observing Invisible Carbenes By Trapping Them with Pyridine , 2002 .

[5]  E. Tippmann,et al.  Carbomethoxychlorocarbene: spectroscopy, theory, chemistry and kinetics. , 2001, Journal of the American Chemical Society.

[6]  John R. Snoonian,et al.  The Photochemistry of Sulfur Analogues of Dialkyldiazomalonates , 2000 .

[7]  J. Wirz,et al.  Adamantylidene revisited: flash photolysis of adamantanediazirine , 1998 .

[8]  R. Moss,et al.  The kinetic range of carbene–pyridine ylide forming reactions , 1994 .

[9]  M. Platz,et al.  Solvent and substituent effects on the reaction of phenylchlorocarbene with pyridine , 1991 .

[10]  J. E. Jackson,et al.  Pyridine ylide formation by capture of phenylchlorocarbene and tert-butylchlorocarbene. Reaction rates of an alkylchlorocarbene by laser flash photolysis , 1988 .

[11]  Maitland Jones,et al.  Reaction of dicarbomethoxycarbene with acetaldehyde and simple ketones , 1988 .

[12]  D. Griller,et al.  Reactions of Triplet Carbenes with Sulfides and Disulfides: Ylide vs. Radical Formation. , 1986 .

[13]  J. Scaiano,et al.  1-naphthylcarbene: spectroscopy, kinetics, and mechanisms , 1986 .

[14]  I. Gould,et al.  Carbene and silicon routes toward a simple nitrile ylide. Spectroscopic, kinetic, and chemical characterization , 1985 .

[15]  W. Andō Ylide formation and rearrangement in the reaction of carbene with divalent sulfur compounds , 1977 .

[16]  T. Hagiwara,et al.  The Photolysis of Dimethyl Diazomalonate in Alcohols. The Detection of Triplet Carbene , 1975 .

[17]  H. Meier,et al.  Die Wolff‐Umlagerung von α‐Diazocarbonyl‐Verbindungen , 1975 .

[18]  W. Andō,et al.  Photolysis of phenyl- and diphenyldiazomethanes in alkyl and allylic sulfides , 1972 .

[19]  P. Howley,et al.  Irradiation of methyl diazomalonate in solution. Reactions of singlet and triplet carbenes with carbon-carbon double bonds , 1972 .

[20]  I. Imai,et al.  Reactions of dimethyl diazomalonate with divalent sulfides , 1972 .

[21]  J. Gosselck,et al.  Zur Reaktion von aliphatischen Diazoverbindungen mit Dimethylsulfoxid , 1972 .

[22]  U. Schöllkopf,et al.  Hinweise auf den radikalischen ablauf der stevens-umlagerung des benzyl-dimethyl-phenacyl-ammoniumylids , 1969 .

[23]  L. Rodina,et al.  THE WOLFF REARRANGEMENT , 1967 .

[24]  E. Ritchie,et al.  Pyridinium ylids in synthesis. III. Synthesis of indolizines , 1967 .

[25]  E. Ritchie,et al.  Pyridinium ylids in synthesis. II. Acylation and the synthesis of b-dicarbonyl compounds , 1967 .