Phage-assisted evolution and protein engineering yield compact, efficient prime editors

[1]  H. Kim,et al.  Prediction of efficiencies for diverse prime editing systems in multiple cell types , 2023, Cell.

[2]  Elin Madli Peets,et al.  Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants , 2023, Nature biotechnology.

[3]  O. Abudayyeh,et al.  Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases , 2022, Nature Biotechnology.

[4]  M. Krauthammer,et al.  Predicting prime editing efficiency and product purity by deep learning , 2022, Nature Biotechnology.

[5]  J. Joung,et al.  Engineered CRISPR prime editors with compact, untethered reverse transcriptases , 2022, Nature Biotechnology.

[6]  Ahmad S. Khalil,et al.  High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs , 2022, Nature Biotechnology.

[7]  H. Xu,et al.  Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism , 2022, Nature Microbiology.

[8]  Alexander A. Sousa,et al.  Designing and executing prime editing experiments in mammalian cells , 2022, Nature Protocols.

[9]  S. Yao,et al.  Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells , 2022, Nucleic acids research.

[10]  Y. Zong,et al.  Author Correction: An engineered prime editor with enhanced editing efficiency in plants , 2022, Nature Biotechnology.

[11]  Q. Ji,et al.  Enhancement of prime editing via xrRNA motif-joined pegRNA , 2022, Nature Communications.

[12]  Tomás C. Rodríguez,et al.  A split prime editor with untethered reverse transcriptase and circular RNA template , 2022, Nature Biotechnology.

[13]  Tony P. Huang,et al.  CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA , 2022, Nature Biotechnology.

[14]  Y. Zong,et al.  An engineered prime editor with enhanced editing efficiency in plants , 2022, Nature Biotechnology.

[15]  M. Kopf,et al.  In vivo prime editing of a metabolic liver disease in mice , 2022, Science Translational Medicine.

[16]  Junyi Duan,et al.  Efficient targeted insertion of large DNA fragments without DNA donors , 2022, Nature Methods.

[17]  Douglas R Martin,et al.  AAV gene therapy for Tay-Sachs disease , 2022, Nature Medicine.

[18]  David R. Liu,et al.  Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins , 2022, Cell.

[19]  David R. Liu,et al.  Programmable deletion, replacement, integration, and inversion of large DNA sequences with twin prime editing , 2021, Nature Biotechnology.

[20]  C. Yi,et al.  Increasing the efficiency and precision of prime editing with guide RNA pairs , 2021, Nature Chemical Biology.

[21]  Z. Weng,et al.  Deletion and replacement of long genomic sequences using prime editing , 2021, Nature Biotechnology.

[22]  David R. Liu,et al.  Enhanced prime editing systems by manipulating cellular determinants of editing outcomes , 2021, Cell.

[23]  J. Loizou,et al.  Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair , 2021, bioRxiv.

[24]  Max W. Shen,et al.  Peptide fusion improves prime editing efficiency , 2021, Nature Communications.

[25]  Simon P. Shen,et al.  Engineered pegRNAs improve prime editing efficiency , 2021, Nature Biotechnology.

[26]  Junjiu Huang,et al.  Dual-AAV delivering split prime editor system for in vivo genome editing. , 2021, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[28]  J. Mendell,et al.  Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy , 2021, JAMA neurology.

[29]  Y. Zong,et al.  High-efficiency prime editing with optimized, paired pegRNAs in plants , 2021, Nature Biotechnology.

[30]  J. Shendure,et al.  Precise genomic deletions using paired prime editing , 2021, Nature Biotechnology.

[31]  T. Flotte,et al.  Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice , 2020, Nature Communications.

[32]  David R. Liu,et al.  Phage-assisted continuous and non-continuous evolution , 2020, Nature Protocols.

[33]  Sungroh Yoon,et al.  Predicting the efficiency of prime editing guide RNAs in human cells , 2020, Nature Biotechnology.

[34]  Sungroh Yoon,et al.  Predicting the efficiency of prime editing guide RNAs in human cells , 2020, Nature Biotechnology.

[35]  David R. Liu,et al.  DNA capture by a CRISPR-Cas9–guided adenine base editor , 2020, Science.

[36]  R. Sorek,et al.  Bacterial Retrons Function In Anti-Phage Defense , 2020, Cell.

[37]  Ruochi Zhang,et al.  CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity , 2020, Nature Biotechnology.

[38]  David R. Liu,et al.  Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity , 2020, Nature Biotechnology.

[39]  David R. Liu,et al.  Prime genome editing in rice and wheat , 2020, Nature Biotechnology.

[40]  David R. Liu,et al.  Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses , 2019, Nature Biomedical Engineering.

[41]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[42]  David R. Liu,et al.  Continuous evolution of base editors with expanded target compatibility and improved activity , 2019, Nature Biotechnology.

[43]  David R. Liu,et al.  Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2 , 2019, ACS synthetic biology.

[44]  H. Vandenburgh,et al.  Challenges in the quest for ‘clean meat’ , 2019, Nature Biotechnology.

[45]  Matthew C. Canver,et al.  CRISPResso2 provides accurate and rapid genome editing sequence analysis , 2019, Nature Biotechnology.

[46]  Luca Pinello,et al.  AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing , 2018, bioRxiv.

[47]  A. Lambowitz,et al.  Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. , 2017, Molecular cell.

[48]  Ryohei Yasuda,et al.  Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain , 2017, Neuron.

[49]  Hui Chen,et al.  The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex , 2017, Nucleic acids research.

[50]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[51]  J. Doudna,et al.  CRISPR-Cas9 Structures and Mechanisms. , 2017, Annual review of biophysics.

[52]  Edward M. Callaway,et al.  In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration , 2016, Nature.

[53]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[54]  David R. Liu,et al.  Development of potent in vivo mutagenesis plasmids with broad mutational spectra , 2015, Nature Communications.

[55]  David R. Liu,et al.  Continuous directed evolution of DNA-binding proteins to improve TALEN specificity , 2015, Nature Methods.

[56]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[57]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[58]  Aaron M. Leconte,et al.  Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution , 2013, Proceedings of the National Academy of Sciences.

[59]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[60]  J. Bujnicki,et al.  Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid , 2013, Nucleic acids research.

[61]  R. Skirgaila,et al.  Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. , 2012, Protein engineering, design & selection : PEDS.

[62]  David R. Liu,et al.  A System for the Continuous Directed Evolution of Biomolecules , 2011, Nature.

[63]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[64]  Z. Izsvák,et al.  Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. , 2009, Methods.

[65]  H. Hogrefe,et al.  Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer , 2008, Nucleic acids research.

[66]  Carola Engler,et al.  A One Pot, One Step, Precision Cloning Method with High Throughput Capability , 2008, PloS one.

[67]  A. Friedler,et al.  Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1. , 2007, Virology.

[68]  R. Schinazi,et al.  Retrovirus Reverse Transcriptases Containing a Modified YXDD Motif , 2005, Antiviral chemistry & chemotherapy.

[69]  G. Gerard,et al.  The role of template-primer in protection of reverse transcriptase from thermal inactivation. , 2002, Nucleic acids research.

[70]  S. Goff,et al.  RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Michael L. Kotewicz,et al.  Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity , 1988, Nucleic Acids Res..