Efficient priority rules for the stochastic resource-constrained project scheduling problem

Abstracts In this study we examine the performance of 17 priority rule heuristics and the justification technique on the stochastic resource-constrained project scheduling problem (SRCPSP). Among the 17 priority rules, 12 are selected from the literature that is addressing the deterministic resource-constrained project scheduling problem (RCPSP), and the other 5 are newly designed, based on stochastic information of the SRCPSP. We evaluate the efficiency of the 17 priority rules on the benchmark data set PSPLIB, and analyze the impact of the project characteristics that were used to create this data set. Our computational results on large size instances show that the best priority rule for the RCPSP does not perform best for the SRCPSP. The best priority rule for the SRCPSP performs as well as the best meta-heuristic when the variance of the activity duration is medium, and outperforms all existing algorithms when this variance is high. The validity of justification on the SRCPSP depends on the priority rule and the activity duration variance. The project characteristics network complexity and resource factor do not influence the choice of the best priority rule, but resource strength does. Our research results can aid managers to schedule project activities more efficiently when facing uncertainties.

[1]  Ling Wang,et al.  An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem , 2015, Flexible Services and Manufacturing Journal.

[2]  Gideon Weiss,et al.  Stochastic scheduling problems I — General strategies , 1984, Z. Oper. Research.

[3]  Erik Demeulemeester,et al.  New Benchmark Results for the Resource-Constrained Project Scheduling Problem , 1997 .

[4]  Douglas D. Gemmill,et al.  Using tabu search to schedule activities of stochastic resource-constrained projects , 1998, Eur. J. Oper. Res..

[5]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[6]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[7]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[8]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[9]  Mario Vanhoucke,et al.  On the dynamic use of project performance and schedule risk information during projecttracking , 2011 .

[10]  Rolf H. Möhring,et al.  Linear preselective policies for stochastic project scheduling , 2000, Math. Methods Oper. Res..

[11]  Francisco Ballestín,et al.  When it is worthwhile to work with the stochastic RCPSP? , 2007, J. Sched..

[12]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[13]  Dale F. Cooper,et al.  Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation , 1976 .

[14]  Gideon Weiss,et al.  Stochastic scheduling problems II-set strategies- , 1985, Z. Oper. Research.

[15]  Roel Leus,et al.  New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing , 2011, J. Sched..

[16]  Tyson R. Browning,et al.  Resource-Constrained Multi-Project Scheduling: Priority Rule Performance Revisited , 2010 .

[17]  Edward W. Davis,et al.  A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling , 1975 .

[18]  Frederik Stork,et al.  Stochastic resource-constrained project scheduling , 2001 .

[19]  Kenneth R. Baker,et al.  Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation , 2012, Eur. J. Oper. Res..

[20]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[21]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[22]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[23]  Haitao Li,et al.  Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming , 2015, Eur. J. Oper. Res..

[24]  Stefan Creemers,et al.  Minimizing the expected makespan of a project with stochastic activity durations under resource constraints , 2015, J. Sched..

[25]  Dimitri Golenko-Ginzburg,et al.  Stochastic network project scheduling with non-consumable limited resources , 1997 .

[26]  Roel Leus,et al.  Resource‐Constrained Project Scheduling for Timely Project Completion with Stochastic Activity Durations , 2007 .

[27]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[28]  F. F. Boctor,et al.  Some efficient multi-heuristic procedures for resource-constrained project scheduling , 1990 .

[29]  Ramón Alvarez-Valdés Olaguíbel,et al.  Chapter 5 – HEURISTIC ALGORITHMS FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING: A REVIEW AND AN EMPIRICAL ANALYSIS , 1989 .

[30]  Gündüz Ulusoy,et al.  Heuristic Performance and Network/Resource Characteristics in Resource-constrained Project Scheduling , 1989 .

[31]  Mario Vanhoucke,et al.  Using activity sensitivity and network topology information to monitor project time performance , 2010 .

[32]  Adolfo López-Paredes,et al.  An extension of the EVM analysis for project monitoring: The Cost Control Index and the Schedule Control Index , 2011 .

[33]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[34]  Francisco Ballestín,et al.  Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..

[35]  Salim Rostami,et al.  New strategies for stochastic resource-constrained project scheduling , 2017, Journal of Scheduling.

[36]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[37]  Rainer Kolisch,et al.  Efficient priority rules for the resource-constrained project scheduling problem , 1996 .

[38]  Rolf H. Möhring,et al.  Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..

[39]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.