Temporal Data Classification Using Linear Classifiers

Data classification is usually based on measurements recorded at the same time. This paper considers temporal data classification where the input is a temporal database that describes measurements over a period of time in history while the predicted class is expected to occur in the future. We describe a new temporal classification method that improves the accuracy of standard classification methods. The benefits of the method are tested on weather forecasting using the meteorological database from the Texas Commission on Environmental Quality and on influenza using the Google Flu Trends database.

[1]  M. Zweig,et al.  Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. , 1993, Clinical chemistry.

[2]  Peter Z. Revesz,et al.  Reclassification of Linearly Classified Data Using Constraint Databases , 2008, ADBIS.

[3]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[4]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[5]  Zoran Obradovic,et al.  Efficient Learning from Massive Spatial-Temporal Data Through Selective Support Vector Propagation , 2006, ECAI.

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[8]  Jan Chomicki,et al.  Classes of Spatio-Temporal Objects and their Closure Properties , 2004, Annals of Mathematics and Artificial Intelligence.

[9]  Jeffrey D. Ullman,et al.  Principles of Database and Knowledge-Base Systems, Volume II , 1988, Principles of computer science series.

[10]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[11]  Peter Z. Revesz,et al.  Spatiotemporal reasoning about epidemiological data , 2006, Artif. Intell. Medicine.

[12]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[13]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[14]  Peter Z. Revesz Introduction to Databases - From Biological to Spatio-Temporal , 2010, Texts in Computer Science.

[15]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[16]  Scot Anderson,et al.  Efficient MaxCount and threshold operators of moving objects , 2009, GeoInformatica.

[17]  Yonghui Wang,et al.  The MLPQ/GIS constraint database system , 2000, SIGMOD '00.

[18]  Vincent S. Tseng,et al.  Effective temporal data classification by integrating sequential pattern mining and probabilistic induction , 2009, Expert Syst. Appl..

[19]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  Laks V. S. Lakshmanan,et al.  The 3W Model and Algebra for Unified Data Mining , 2000, VLDB.

[22]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[23]  Ingolf Geist,et al.  A framework for data mining and KDD , 2002, SAC '02.

[24]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[25]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[26]  Gabriel M. Kuper,et al.  Constraint Databases , 2010, Springer Berlin Heidelberg.

[27]  Peter Z. Revesz,et al.  Introduction to Constraint Databases , 2002, Texts in Computer Science.

[28]  Stéphane Grumbach,et al.  The DEDALE system for complex spatial queries , 1998, SIGMOD '98.

[29]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[30]  E. F. Codd,et al.  A Relational Model for Large Shared Data Banks , 1970 .