Effect of a built-in electric field in asymmetric ferroelectric tunnel junctions

The contribution of a built-in electric field to ferroelectric phase transition in asymmetric ferroelectric tunnel junctions is studied using a multiscale thermodynamic model. It is demonstrated in details that there exists a critical thickness at which an unusual ferroelectric-\'\' polar non-ferroelectric\rq\rq phase transition occurs in asymmetric ferroelectric tunnel junctions. In the \'\' polar non-ferroelectric\rq\rq phase, there is only one non-switchable polarization which is caused by the competition between the depolarizing field and the built-in field, and closure-like domains are proposed to form to minimize the system energy. The transition temperature is found to decrease monotonically as the ferroelectric barrier thickness is decreased and the reduction becomes more significant for the thinner ferroelectric layers. As a matter of fact, the built-in electric field does not only result in smearing of phase transition but also forces the transition to take place at a reduced temperature. Such findings may impose a fundamental limit on the work temperature and thus should be further taken into account in the future ferroelectric tunnel junction-type or ferroelectric capacitor-type devices.

[1]  Yue Zheng,et al.  Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. , 2011, ACS nano.

[2]  A M Bratkovsky,et al.  Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. , 2005, Physical review letters.

[3]  E. Tsymbal,et al.  Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions , 2010 .

[4]  Jing Zhu,et al.  Size effect and fatigue mechanism in ferroelectric thin films , 2002 .

[5]  C. M. Folkman,et al.  Enhancement of Ferroelectric Polarization Stability by Interface Engineering , 2012, Advanced materials.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  First-principles study of the critical thickness in asymmetric ferroelectric tunnel junctions , 2011 .

[8]  J. Junquera,et al.  Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. , 2008, Physical review letters.

[9]  J. Junquera,et al.  Band alignment at metal/ferroelectric interfaces: insights and artifacts from first principles , 2011, 1103.0504.

[10]  J. Simmons Intrinsic Fields in Thin Insulating Films between Dissimilar Electrodes , 1963 .

[11]  E. Tsymbal,et al.  Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: An ab initio study , 2009 .

[12]  E. Tsymbal,et al.  Ferroelectric switch for spin injection , 2005 .

[13]  Chun-Gang Duan,et al.  Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. , 2007, Physical review letters.

[14]  D. J. Kim,et al.  Ferroelectric properties of SrRuO3∕BaTiO3∕SrRuO3 ultrathin film capacitors free from passive layers , 2005, cond-mat/0506495.

[15]  V. Garcia,et al.  Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers , 2010 .

[16]  Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of 'dead layers'. , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[18]  E. Tsymbal,et al.  Ferroelectric control of magnetism in BaTiO3 /Fe heterostructures via interface strain coupling , 2007 .

[19]  A. Tagantsev,et al.  Ferroelectricity in asymmetric metal-ferroelectric-metal heterostructures: a combined first-principles-phenomenological approach. , 2007, Physical review letters.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  A. Gruverman,et al.  Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers , 2012 .

[22]  A Gloter,et al.  Interface-induced room-temperature multiferroicity in BaTiO₃. , 2011, Nature materials.

[23]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[24]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[25]  Tae Won Noh,et al.  Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors , 2005 .

[26]  M. Alexe,et al.  Reversible electrical switching of spin polarization in multiferroic tunnel junctions. , 2012, Nature materials.

[27]  A. Petraru,et al.  Crossing an Interface: Ferroelectric Control of Tunnel Currents in Magnetic Complex Oxide Heterostructures , 2010 .

[28]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[29]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[30]  P. Ordejón,et al.  Electroresistance effect in ferroelectric tunnel junctions with symmetric electrodes. , 2012, ACS nano.

[31]  Vincent Garcia,et al.  Ferroelectric and multiferroic tunnel junctions , 2012 .

[32]  Marin Alexe,et al.  Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.

[33]  Ivan Naumov,et al.  Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. , 2008, Physical review letters.

[34]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[35]  E. Tsymbal,et al.  Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface , 2008 .

[36]  L Bellaiche,et al.  Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. , 2004, Physical review letters.

[37]  Ronggui Yang,et al.  Lattice model for strained nanoscale ferroelectric capacitors: Investigation on fundamental size limits in ferroelectricity , 2009 .

[38]  T. Kitamura,et al.  Ab initio study of ferroelectric closure domains in ultrathin PbTiO_{3} films , 2010 .

[39]  A. Tagantsev,et al.  Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films , 2000 .

[40]  H. Kohlstedt,et al.  Elastic stabilization of a single-domain ferroelectric state in nanoscale capacitors and tunnel junctions. , 2007, Physical review letters.

[41]  A. Bratkovsky,et al.  Continuous theory of ferroelectric states in ultrathin films with real electrodes , 2008, 0801.1669.

[42]  Yue Zheng,et al.  Vanishing critical thickness in asymmetric ferroelectric tunnel junctions : first principle simulations , 2011 .

[43]  A. Tagantsev,et al.  Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures , 2008 .

[44]  Xingyue Peng,et al.  Space Charge Effect on the Ferroelectricity in Epitaxial Ferroelectric–Paraelectric Superlattices , 2011 .

[45]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[46]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[47]  I. Mertig,et al.  Structural secrets of multiferroic interfaces. , 2011, Physical review letters.

[48]  G. Fu,et al.  The elimination of deviations of the mean-field Landau-type theory from the fancy size effect experiment in nanoscale ferroelectric BaTiO3 capacitors , 2010 .

[49]  E. Tsymbal,et al.  Interface dipole effect on thin film ferroelectric stability: First-principles and phenomenological modeling , 2012 .

[50]  J D Burton,et al.  Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance States from first principles. , 2009, Nano letters.

[51]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[52]  X. Lou,et al.  Intrinsic electrocaloric effect in ultrathin ferroelectric capacitors , 2012 .

[53]  E. Tsymbal,et al.  Mechanically-induced resistive switching in ferroelectric tunnel junctions. , 2012, Nano letters.

[54]  E. Tsymbal,et al.  Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface , 2009, 0904.1726.

[55]  B. Silverman,et al.  Depolarization fields in thin ferroelectric films , 1973 .

[56]  V. Garcia,et al.  Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. , 2012, Nano letters.

[57]  Yue Zheng,et al.  Critical properties of nanoscale asymmetric ferroelectric tunnel junctions or capacitors , 2012 .

[58]  S. Alpay,et al.  Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties , 2010 .

[59]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[60]  B. Meyer,et al.  Ab initio calculations of ferroelectric instability in PbTiO 3 capacitors with symmetric and asymmetric electrode layers , 2009 .

[61]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[62]  E. Tsymbal,et al.  Organic multiferroic tunnel junctions with ferroelectric poly(vinylidene fluoride) barriers. , 2010, Nano letters.

[63]  A. Klein,et al.  Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy , 2012 .