Spectral response of benthic diatoms with different sediment backgrounds

[1]  Hugh L. MacIntyre,et al.  Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production , 1996 .

[2]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[3]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[4]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[5]  J. Serôdio,et al.  NONDESTRUCTIVE TRACING OF MIGRATORY RHYTHMS OF INTERTIDAL BENTHIC MICROALGAE USING IN VIVO CHLOROPHYLL A FLUORESCENCE 1, 2 , 1997 .

[6]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[7]  A preliminary investigation into the spectral characteristics of inter-tidal estuarine sediments , 1996 .

[8]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[9]  Dr Robert Bryant,et al.  The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments: Implications for airborne image acquisition and processing , 2000 .

[10]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[11]  C. Sotin,et al.  Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images , 2005 .

[12]  P. Launeau,et al.  Optical properties of microphytobenthic biofilms (MPBOM): Biomass retrieval implication , 2011 .

[13]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[14]  R. Jackson,et al.  Spectral response of a plant canopy with different soil backgrounds , 1985 .

[15]  R. Forster,et al.  Field spectroscopy of estuarine intertidal habitats , 2006 .

[16]  J. Qi,et al.  A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy , 2007 .

[17]  C. Verpoorter Télédétection hyperspectrale et cartographie des faciès sédimentaires en zone intertidale : application à la Baie de Bourgneuf , 2009 .

[18]  Daphne van der Wal,et al.  Spatial Synchrony in Intertidal Benthic Algal Biomass in Temperate Coastal and Estuarine Ecosystems , 2010, Ecosystems.

[19]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[20]  D. Gianelle,et al.  Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) , 2008 .

[21]  Veronique Carrere,et al.  Comparison of simple techniques for estimating chlorophyll a concentration in the intertidal zone using high spectral-resolution field-spectrometer data , 2004 .

[22]  P. Herman,et al.  Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment , 2008 .

[23]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[24]  David Gilvear,et al.  Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing , 2003 .

[25]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[26]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[27]  Adrian V. Rocha,et al.  Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes , 2009 .

[28]  Karen Helen Wiltshire,et al.  Microbiological mediation of spectral reflectance from intertidal cohesive sediments , 1998 .

[29]  V. Brotas,et al.  Spatial dynamics of microphytobenthos determined by PAM fluorescence , 2005 .

[30]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[31]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[32]  A. Huete,et al.  Development of a two-band enhanced vegetation index without a blue band , 2008 .

[33]  J. Serôdio,et al.  Effects of desiccation on the photosynthetic activity of intertidal microphytobenthos biofilms as studied by optical methods , 2009 .

[34]  L. Barillé,et al.  Comparative analysis of field and laboratory spectral reflectances of benthic diatoms with a modified Gaussian model approach , 2007 .

[35]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[36]  Geir Johnsen,et al.  Using absorbance and fluorescence spectra to discriminate microalgae , 2002 .

[37]  Rodney M. Forster,et al.  Relationship of intertidal surface sediment chlorophyll concentration to hyperspectral reflectance and chlorophyll fluorescence , 2006 .

[38]  M. Pinkerton,et al.  Field spectrometry: New methods to investigate epilithic micro-algae on rocky shores , 2005 .

[39]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[40]  R. Jackson,et al.  Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands , 1987 .

[41]  Jin Chen,et al.  Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction , 2006 .

[42]  Richard J. Murphy,et al.  Estimation of surface chlorophyll‐a on an emersed mudflat using field spectrometry: accuracy of ratios and derivative‐based approaches , 2005 .

[43]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[44]  G. Underwood,et al.  Primary Production by Phytoplankton and Microphytobenthos in Estuaries , 1999 .

[45]  Paulo Cartaxana,et al.  Effects of chlorophyll fluorescence on the estimation of microphytobenthos biomass using spectral reflectance indices , 2009 .

[46]  Veronique Carrere,et al.  Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures , 2003 .

[47]  V. Brotas,et al.  Effect of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements , 2006 .

[48]  A. Huete,et al.  Etude des propriétés spectrales des sols arides appliquée à l'amélioration des indices de végétation obtenus par télédétection , 1991 .

[49]  R. Murphy,et al.  Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing , 2008 .

[50]  Ronald J. P. Lyon,et al.  Influence of rock-soil spectral variation on the assessment of green biomass , 1985 .

[51]  N. Broge,et al.  Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data , 2002 .

[52]  P. Gaudin,et al.  Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France) , 2005 .

[53]  Y. Rincé,et al.  Cartographie des peuplements du microphytobenthos par télédétection spatiale visible-infrarouge dans un écosystème conchylicole , 2003 .

[54]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[55]  K. Pye,et al.  GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments , 2001 .