Anion-redox nanolithia cathodes for Li-ion batteries

The significant phase change between gaseous and crystalline oxygen deteriorates the performance of lithium–air batteries. Here the authors report a battery with a cathode consisting of Li2O and Co3O4 nanocomposites, which displays stable cyclability and high energy density, without involving any gas evolution.

[1]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[2]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[3]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .

[4]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[5]  J. Niu,et al.  High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity , 2015, Nature Communications.

[6]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[7]  Yuki Yamada,et al.  A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte , 2014, Scientific Reports.

[8]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[9]  Fred Basolo,et al.  Synthetic oxygen carriers related to biological systems , 1979 .

[10]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[11]  Wei Li,et al.  Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries , 2013 .

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  Shyue Ping Ong,et al.  A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries , 2013 .

[14]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[17]  Francesco Mauri,et al.  Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials , 2007 .

[18]  Dean J. Miller,et al.  Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries. , 2015, Nano letters.

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[21]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[22]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.

[23]  I. Belharouak Lithium Ion Batteries - New Developments , 2012 .

[24]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[25]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[26]  Y. Hwang,et al.  Enhanced mobility of confined polymers. , 2007, Nature materials.

[27]  Ju Li,et al.  Near neutrality of an oxygen molecule adsorbed on a Pt(111) surface. , 2008, Physical review letters.

[28]  A. Kushima,et al.  Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery. , 2015, Nano letters.

[29]  Wei Li,et al.  Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery , 2013 .

[30]  Yunhui Huang,et al.  Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. , 2015, Nano letters.

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[33]  Chi-Hang Lam,et al.  Glass Transition Dynamics and Surface Layer Mobility in Unentangled Polystyrene Films , 2010, Science.

[34]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[37]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[38]  K. Amine,et al.  Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery. , 2014, The journal of physical chemistry letters.

[39]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[40]  K. Lau,et al.  Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure , 2011 .

[41]  H. Ibach,et al.  Adsorption of oxygen on Pt(111) , 1982 .