Hard versus fuzzy c-means clustering for color quantization

Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality, the former algorithm is neither objectively nor subjectively superior to the latter.

[1]  Lawrence O. Hall,et al.  Fast fuzzy clustering , 1998, Fuzzy Sets Syst..

[2]  Charles Elkan,et al.  Using the Triangle Inequality to Accelerate k-Means , 2003, ICML.

[3]  Joel H. Saltz,et al.  Histopathological Image Analysis Using Model-Based Intermediate Representations and Color Texture: Follicular Lymphoma Grading , 2009, J. Signal Process. Syst..

[4]  Meena Mahajan,et al.  The Planar k-means Problem is NP-hard I , 2009 .

[5]  Evripidis Bampis,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2007 .

[6]  Aleksandra Mojsilovic,et al.  Color Quantization and Processing by Fibonacci Lattices , 2022 .

[7]  Daniel Thalmann,et al.  New Trends in Computer Graphics , 1988, Springer Berlin Heidelberg.

[8]  Gerald Schaefer,et al.  Neural Gas Clustering For Color Reduction , 2010, IPCV.

[9]  Enhua Wu,et al.  Real-time coherent stylization for augmented reality , 2010, The Visual Computer.

[10]  Charalambos Strouthopoulos,et al.  Adaptive color reduction , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[11]  M. Emre Celebi,et al.  Fast Color Quantization Using Weighted Sort-Means Clustering , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Michael T. Orchard,et al.  Color quantization of images , 1991, IEEE Trans. Signal Process..

[13]  Shyi-Chyi Cheng,et al.  Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis , 2007, Pattern Recognit..

[14]  Andrew S. Glassner,et al.  Graphics Gems , 1990 .

[15]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[16]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[17]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[18]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Oleg. Verevka The local K-means algorithm for colour image quantization , 1995 .

[20]  Steven J. Phillips Acceleration of K-Means and Related Clustering Algorithms , 2002, ALENEX.

[21]  Fatih Celiker,et al.  Fast Color Space Transformations Using Minimax Approximations , 2010, ArXiv.

[22]  Luiz Velho,et al.  Color image quantization by pairwise clustering , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[23]  Yu-Chen Hu,et al.  K-means-based color palette design scheme with the use of stable flags , 2007, J. Electronic Imaging.

[24]  Srinivasan Parthasarathy,et al.  Proceedings of the 2010 SIAM International Conference on Data Mining , 2010 .

[25]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[26]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[27]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ruey-Feng Chang,et al.  A Fast Finite-State Algorithm for Generating RGB Palettes of Color Quantized Images , 2004, J. Inf. Sci. Eng..

[29]  P. Prusinkiewicz,et al.  Variance‐based color image quantization for frame buffer display , 1990 .

[30]  S. H. Leung,et al.  Color quantization by fuzzy quantizer , 1993, Electronic Imaging.

[31]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[32]  Chip-Hong Chang,et al.  New adaptive color quantization method based on self-organizing maps , 2005, IEEE Transactions on Neural Networks.

[33]  Yung-Sheng Chen,et al.  Efficient fuzzy c-means clustering for image data , 2005, J. Electronic Imaging.

[34]  Xindong Wu,et al.  The Top Ten Algorithms in Data Mining , 2009 .

[35]  Nasser Sherkat,et al.  Use of colour for hand-filled form analysis and recognition , 2005, Pattern Analysis and Applications.

[36]  Paul Scheunders,et al.  A comparison of clustering algorithms applied to color image quantization , 1997, Pattern Recognit. Lett..

[37]  Lale Akarun,et al.  A fuzzy algorithm for color quantization of images , 2002, Pattern Recognit..

[38]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[39]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[40]  Greg Hamerly,et al.  Making k-means Even Faster , 2010, SDM.

[41]  M. Emre Celebi,et al.  Improving the performance of k-means for color quantization , 2011, Image Vis. Comput..

[42]  Lawrence O. Hall,et al.  Fast Accurate Fuzzy Clustering through Data Reduction , 2003 .

[43]  A. Ersak,et al.  A fuzzy colour quantizer for renderers , 1998 .

[44]  Gerald Schaefer,et al.  Fuzzy clustering for colour reduction in images , 2009, Telecommun. Syst..

[45]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[46]  Wen-Hsiang Tsai,et al.  Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle , 1998, Pattern Recognit. Lett..

[47]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Michael A. Arbib,et al.  An algorithm for competitive learning in clustering problems , 1994, Pattern Recognit..

[49]  Yu-Chen Hu,et al.  Accelerated pixel mapping scheme for colour image quantisation , 2008 .

[50]  B. S. Manjunath,et al.  An efficient color representation for image retrieval , 2001, IEEE Trans. Image Process..

[51]  James C. Bezdek,et al.  Extending fuzzy and probabilistic clustering to very large data sets , 2006, Comput. Stat. Data Anal..

[52]  Xiaolin Wu,et al.  EFFICIENT STATISTICAL COMPUTATIONS FOR OPTIMAL COLOR QUANTIZATION , 1991 .

[53]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .

[54]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[55]  Frank Höppner Speeding up fuzzy c-means: using a hierarchical data organisation to control the precision of membership calculation , 2002, Fuzzy Sets Syst..

[56]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[57]  Jan P. Allebach,et al.  New approach to palette selection for color images , 1991, Electronic Imaging.

[58]  Doheon Lee,et al.  A novel initialization scheme for the fuzzy c-means algorithm for color clustering , 2004, Pattern Recognit. Lett..

[59]  M. Emre Celebi,et al.  An Effective Color Quantization Method Based on the Competitive Learning Paradigm , 2009, IPCV.

[60]  John F. Kolen,et al.  Reducing the time complexity of the fuzzy c-means algorithm , 2002, IEEE Trans. Fuzzy Syst..