Integrated gene expression profiles reveal a transcriptomic network underlying the thermogenic response in adipose tissue

[1]  M. Kanehisa,et al.  KEGG for taxonomy-based analysis of pathways and genomes , 2022, Nucleic Acids Res..

[2]  M. Tschöp,et al.  Anti-obesity drug discovery: advances and challenges , 2021, Nature reviews. Drug discovery.

[3]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[4]  N. McKenna,et al.  Adipocyte-Specific Ablation of PU.1 Promotes Energy Expenditure and Ameliorates Metabolic Syndrome in Aging Mice , 2021, bioRxiv.

[5]  A. Mark,et al.  Brown adipose tissue is associated with cardiometabolic health , 2021, Nature Medicine.

[6]  R. Spang,et al.  Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1 , 2020, Nature Communications.

[7]  Petra C. Schwalie,et al.  Systems-Genetics-Based Inference of a Core Regulatory Network Underlying White Fat Browning. , 2019, Cell reports.

[8]  J. Ofrecio,et al.  Adipocyte PU.1 knockout promotes insulin sensitivity in HFD-fed obese mice , 2019, Scientific Reports.

[9]  B. Lin,et al.  microRNA‐665 silencing improves cardiac function in rats with heart failure through activation of the cAMP signaling pathway , 2019, Journal of cellular physiology.

[10]  Kitti Garai,et al.  “Beige” Cross Talk Between the Immune System and Metabolism , 2019, Front. Endocrinol..

[11]  Othman Soufan,et al.  NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis , 2019, Nucleic Acids Res..

[12]  Jan Gorodkin,et al.  Cytoscape stringApp: Network analysis and visualization of proteomics data , 2018, bioRxiv.

[13]  Carsten Sticht,et al.  miRWalk: An online resource for prediction of microRNA binding sites , 2018, PloS one.

[14]  F. Villarroya,et al.  Inflammation of brown/beige adipose tissues in obesity and metabolic disease , 2018, Journal of internal medicine.

[15]  Xianlin Han,et al.  Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis , 2018, Cell metabolism.

[16]  C. Diwoky,et al.  Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue , 2017, Cell metabolism.

[17]  O. Gavrilova,et al.  Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice. , 2017, Cell metabolism.

[18]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[19]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[20]  M. Portillo,et al.  Erratum to: MicroRNAs involved in the browning process of adipocytes , 2016, Journal of Physiology and Biochemistry.

[21]  M. Lazar,et al.  Genetic backgrounds determine brown remodeling of white fat in rodents , 2016, Molecular metabolism.

[22]  J. Barclay,et al.  Characterization of cold‐induced remodelling reveals depot‐specific differences across and within brown and white adipose tissues in mice , 2016, Acta physiologica.

[23]  S. Herzig,et al.  miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function , 2016, Molecular metabolism.

[24]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[25]  S. Vienberg,et al.  MicroRNAs in metabolism , 2016, Acta physiologica.

[26]  P. Pitule,et al.  Mitochondria in White, Brown, and Beige Adipocytes , 2016, Stem cells international.

[27]  Jung Eun Shim,et al.  TRRUST: a reference database of human transcriptional regulatory interactions , 2015, Scientific Reports.

[28]  Clark R. Andersen,et al.  Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans , 2014, Diabetes.

[29]  R. Palmiter,et al.  Eosinophils and Type 2 Cytokine Signaling in Macrophages Orchestrate Development of Functional Beige Fat , 2014, Cell.

[30]  M Saito,et al.  Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans , 2014, International Journal of Obesity.

[31]  L. Sidossis,et al.  Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress (1160.5) , 2014, Cell metabolism.

[32]  M. Trajkovski,et al.  MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. , 2014, Metabolism: clinical and experimental.

[33]  Bruce M. Spiegelman,et al.  What We Talk About When We Talk About Fat , 2014, Cell.

[34]  N. Petrovic,et al.  UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. , 2013, Cell reports.

[35]  F. Liu,et al.  Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. , 2013, Biochemical and biophysical research communications.

[36]  P. Scherer,et al.  Tracking adipogenesis during white adipose tissue development, expansion and regeneration , 2013, Nature Medicine.

[37]  T. Rülicke,et al.  Bi-directional interconversion of brite and white adipocytes , 2013, Nature Cell Biology.

[38]  M. Borga,et al.  Evidence for two types of brown adipose tissue in humans , 2013, Nature Medicine.

[39]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[40]  Yingying Zhang,et al.  Expression profiles of miRNAs in polarized macrophages. , 2013, International journal of molecular medicine.

[41]  B. Spiegelman,et al.  Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human , 2012, Cell.

[42]  R. Locksley,et al.  Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis , 2011, Nature.

[43]  Lokesh P. Tripathi,et al.  TargetMine, an Integrated Data Warehouse for Candidate Gene Prioritisation and Target Discovery , 2011, PloS one.

[44]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[45]  E. Pujadas,et al.  A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. , 2009, Immunity.

[46]  T. Bengtsson,et al.  Unexpected evidence for active brown adipose tissue in adult humans. , 2007, American journal of physiology. Endocrinology and metabolism.

[47]  P. Shannon,et al.  Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks , 2003 .

[48]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[49]  A. Pfeifer,et al.  MicroRNAs in brown and beige fat. , 2019, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[50]  S. Kajimura,et al.  Transcriptional and epigenetic control of brown and beige adipose cell fate and function , 2016, Nature Reviews Molecular Cell Biology.

[51]  Jan Nedergaard,et al.  Brown adipose tissue: function and physiological significance. , 2004, Physiological reviews.