A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns

In this paper, we propose a new representation of the cortical surface that may be used to study the cortex folding process and to recover some putative stable anatomical landmarks called sulcal roots usually buried in the depth of adult brains. This representation is a primal sketch derived from a scale space computed for the mean curvature of the cortical surface. This scale-space stems from a diffusion equation geodesic to the cortical surface. The primal sketch is made up of objects defined from mean curvature minima and saddle points. The resulting sketch aims first at highlighting significant elementary cortical folds, second at representing the fold merging process during brain growth. The relevance of the framework is illustrated by the study of central sulcus sulcal roots from antenatal to adult age. Some results are proposed for ten different brains. Some preliminary results are also provided for superior temporal sulcus.

[1]  D. J. Cunningham,et al.  Contribution to the surface anatomy of the cerebral hemispheres . with A chapter upon cranio-cerebral topography , 1892 .

[2]  D Waterston,et al.  Complete Bilateral Interruption of the Fissure of Rolando. , 1907, Journal of anatomy and physiology.

[3]  A. Mercer Numerical Solution of Ordinary and Partial Differential Equations , 1963 .

[4]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[5]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[6]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[7]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Ronald Christensen,et al.  Plane Answers to Complex Questions , 1987, Springer Texts in Statistics.

[9]  Harvey Gould,et al.  The Numerical Solution of Ordinary and Partial Differential Equations , 1989 .

[10]  Jayaram K. Udupa,et al.  Fast surface tracking in three-dimensional binary images , 1989, Comput. Vis. Graph. Image Process..

[11]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .

[12]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[13]  G. Huiskamp Difference formulas for the surface Laplacian on a triangulated surface , 1991 .

[14]  山浦 晶 Atlas of the Cerebral Sulci, Michio Ono, Stefan Kubik and Chad D. Abernathey著, Georg Thieme Verlag, Stuttgart, New York 1990(らいぶらりい) , 1992 .

[15]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[16]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[18]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[19]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[20]  Lewis D. Griffin The intrinsic geometry of the cerebral cortex. , 1994, Journal of theoretical biology.

[21]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[22]  J. Régis,et al.  Generic model for the localization of the cerebral cortex and preoperative multimodal integration in epilepsy surgery. , 1995, Stereotactic and functional neurosurgery.

[23]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[24]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[25]  Eric Boix Approximation linéaire des surfaces de R3 et applications , 1995 .

[26]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[27]  Jean Régis,et al.  Shape Bottlenecks and Conservative Flow Systems , 1996 .

[28]  V. Frouin,et al.  Shape bottlenecks and conservative flow systems [medical image analysis] , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[29]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[30]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[31]  Jean-Francois Mangin,et al.  Differential features of cortical folds , 1997, CVRMed.

[32]  Christian Barillot,et al.  Modeling Cortical Sulci with Active Ribbons , 1997, Int. J. Pattern Recognit. Artif. Intell..

[33]  Christos Davatzikos,et al.  Finding parametric representations of the cortical sulci using an active contour model , 1997, Medical Image Anal..

[34]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[35]  H. Alkadhi,et al.  Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. , 1997, Brain : a journal of neurology.

[36]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[37]  R. Christensen Plane Answers to Complex Questions: The Theory of Linear Models. , 1997 .

[38]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[39]  J. Régis,et al.  Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area. , 1998, Cerebral cortex.

[40]  Jean-Francois Mangin,et al.  Robust Brain Segmentation Using Histogram Scale-Space Analysis and Mathematical Morphology , 1998, MICCAI.

[41]  C. Davatzikos,et al.  A probabilistic ribbon model for shape analysis of the cerebral sulci: application to the central sulcus. , 1998, Journal of computer assisted tomography.

[42]  P. Véron,et al.  Outils de base pour l'extraction de caractéristiques de surfaces numérisées , 1998 .

[43]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[44]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[45]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[46]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[47]  Karl J. Friston,et al.  Correlation between structural and functional changes in brain in an idiopathic headache syndrome , 1999, Nature Medicine.

[48]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[49]  R. Bittar,et al.  Localization of hand motor activation in Broca's pli de passage moyen. , 1999, Journal of neurosurgery.

[50]  J. Ashburner,et al.  Voxel-by-Voxel Comparison of Automatically Segmented Cerebral Gray Matter—A Rater-Independent Comparison of Structural MRI in Patients with Epilepsy , 1999, NeuroImage.

[51]  Michel Desvignes,et al.  Detection and Statistical Analysis of Human Cortical Sulci , 1999, NeuroImage.

[52]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[53]  N. Ayache,et al.  Multimodal Brain Warping Using the Demons Algorithm and Adaptative Intensity Corrections , 1999 .

[54]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[55]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[56]  J. Mangin,et al.  Entropy minimization for automatic correction of intensity nonuniformity , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[57]  Richard S. J. Frackowiak,et al.  Navigation-related structural change in the hippocampi of taxi drivers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[59]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Alan C. Evans,et al.  Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape , 2000, NeuroImage.

[61]  J. -B. Poline,et al.  Structural Group Analysis of Functional Activation Maps , 2000, NeuroImage.

[62]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[63]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[64]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[65]  Alan C. Evans,et al.  A Unified Statistical Approach to Deformation-Based Morphometry , 2001, NeuroImage.

[66]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[67]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[68]  C. Hillenbrand,et al.  Establishing T2-contrast in trueFISP imaging , 2001 .

[69]  Alan C. Evans,et al.  Maturation of white matter in the human brain: a review of magnetic resonance studies , 2001, Brain Research Bulletin.

[70]  J. Régis,et al.  Study of Cortical Folding Process with Prenatal MR Imaging , 2001 .

[71]  K. Worsley,et al.  Diffusion smoothing on the cortical surface , 2001, NeuroImage.

[72]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[73]  Jerry L. Prince,et al.  Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain , 2002, IEEE Transactions on Medical Imaging.

[74]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[75]  Isabelle Bloch,et al.  Gyral Parcellation of the Cortical Surface Using Geodesic Voronoï Diagrams , 2002, MICCAI.

[76]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[77]  A. Toga,et al.  New approaches in brain morphometry. , 2002, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[78]  C. Davatzikos,et al.  Morphometric Analysis of Cortical Sulci Using Parametric Ribbons: A Study of the Central Sulcus , 2002, Journal of computer assisted tomography.

[79]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[80]  LA Vrence Segmentation Based on Intensity Extrema , 2004 .

[81]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[82]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[83]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.