Stable neural PID anti-swing control for an overhead crane

PD with compensation or PID are the most popular algorithms for the overhead crane control. To minimize steady-state error with respect to uncertaintie, PID control needs a big integral gain and the PD with compensator requires a large derivative gain. Both of them deteriorate transient performances of the crane control. In this paper, we propose a novel anti-swing control strategy which combines PID control with neural compensation. The main theory contributions of this paper are semiglobal asymptotic stability of the neural PID for the anti-swing control is proven with standard weights training algorithms. The conditions give explicit selection methods for the gains of the linear PID control. A experimental study on an overhead crane with this neural PID control is addressed.

[1]  Ho-Hoon Lee,et al.  Modeling and Control of a Three-Dimensional Overhead Crane , 1998 .

[2]  H. Troger,et al.  Time optimal control of overhead cranes with hoisting of the load , 1987, Autom..

[3]  Oliver Sawodny,et al.  An automated gantry crane as a large workspace robot , 2002 .

[4]  Shuang Cong,et al.  PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems , 2009, IEEE Transactions on Industrial Electronics.

[5]  Frank L. Lewis,et al.  Nonlinear feedback control of a gantry crane , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[6]  Dongkyoung Chwa Nonlinear Tracking Control of 3-D Overhead Cranes Against the Initial Swing Angle and the Variation of Payload Weight , 2009, IEEE Transactions on Control Systems Technology.

[7]  Ho-Hoon Lee,et al.  A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting , 2004 .

[8]  George K. I. Mann,et al.  Two-level tuning of fuzzy PID controllers , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Ho-Hoon Lee,et al.  A fuzzy-logic antiswing controller for three-dimensional overhead cranes. , 2002 .

[10]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[11]  Carlos Canudas de Wit,et al.  Sliding observers for robot manipulators , 1991, Autom..

[12]  Kamal A. F. Moustafa,et al.  Nonlinear Modeling and Control of Overhead Crane Load Sway , 1988 .

[13]  Wojciech Blajer,et al.  Motion planning and control of gantry cranes in cluttered work environment , 2007 .

[14]  Ali H. Nayfeh,et al.  Dynamics and Control of Cranes: A Review , 2003 .

[15]  R. Kelly Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions , 1998, IEEE Trans. Autom. Control..

[16]  Rebecca Y. M. Wong,et al.  Improving Quality of Crane-Lorry Assignments With Constraint Programming , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[17]  Mark W. Noakes,et al.  Generalized inputs for damped-vibration control of suspended payloads , 1992, Robotics Auton. Syst..

[18]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[19]  Alessandro Giua,et al.  An implicit gain-scheduling controller for cranes , 1998, IEEE Trans. Control. Syst. Technol..

[20]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[21]  Dingli Yu,et al.  Fault tolerant control of multivariable processes using auto-tuning PID controller , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Xiaoou Li,et al.  Anti-Swing Control For An Overhead Crane With Fuzzy Compensation , 2012, Intell. Autom. Soft Comput..

[23]  Yoshiyuki Sakawa,et al.  Optimal control of container cranes , 1981, Autom..

[24]  Marwan A. Simaan,et al.  A Dynamical State Space Representation and Performance Analysis of a Feedback-Controlled Rotary Left Ventricular Assist Device , 2009, IEEE Transactions on Control Systems Technology.

[25]  A. Tornambè,et al.  High-gain observers in the state and estimation of robots having elastic joints , 1989 .

[26]  Wail Gueaieb,et al.  The hierarchical expert tuning of PID controllers using tools of soft computing , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Juan A. Méndez,et al.  An Application of a Neural Self-Tuning Controller to an Overhead Crane , 1999, Neural Computing & Applications.

[28]  Warren P. Seering,et al.  Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs , 1994 .

[29]  Warren E. Dixon,et al.  Nonlinear coupling control laws for an underactuated overhead crane system , 2003 .