Minimal Harary index of unicyclic graphs with diameter at most 4

Abstract The Harary index of a graph G is defined as H ( G ) = ∑ { u , v } ⊆ V ( G ) 1 d G ( u , v ) , where dG(u, v) is the distance between the vertices u and v. In this paper, we respectively determine the minimal Harary index among all unicyclic graphs with diameter 3 and all unicyclic graphs with diameter 4.

[1]  Ovidiu Ivanciuc,et al.  QSAR Comparative Study of Wiener Descriptors for Weighted Molecular Graphs , 2000, J. Chem. Inf. Comput. Sci..

[2]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[3]  Xiao-Dong Zhang,et al.  Distance-Based Graph Invariants of Trees and the Harary Index , 2013 .

[4]  Jing Ma,et al.  The Wiener Polarity Index of Graph Products , 2014, Ars Comb..

[5]  Ovidiu Ivanciuc,et al.  Design of Topological Indices. Part 10.1 Parameters Based on Electronegativity and Covalent Radius for the Computation of Molecular Graph Descriptors for Heteroatom-Containing Molecules , 1998, J. Chem. Inf. Comput. Sci..

[6]  Nenad Trinajstić,et al.  Harary Index - Twelve Years Later* , 2002 .

[7]  Lihua Feng,et al.  The distance spectral radius of graphs with given independence number , 2015, Ars Comb..

[8]  Bo Zhou,et al.  Bounds on Harary index , 2009 .

[9]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[10]  Ivan Gutman,et al.  A PROPERTY OF THE WIENER NUMBER AND ITS MODIFICATIONS , 1997 .

[11]  Yongtang Shi,et al.  Note on two generalizations of the Randić index , 2015, Appl. Math. Comput..

[12]  Stephan Wagner A Class of Trees and its Wiener Index , 2006 .

[13]  István Lukovits,et al.  Distance-Related Indexes in the Quantitative Structure-Property Relationship Modeling , 2001, J. Chem. Inf. Comput. Sci..

[14]  Ovidiu Ivanciuc,et al.  Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices , 1993 .

[15]  Kexiang Xu Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index , 2013 .

[16]  Kexiang Xu Trees with the seven smallest and eight greatest Harary indices , 2012, Discret. Appl. Math..

[17]  Lihua Feng,et al.  Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number , 2010, Appl. Math. Lett..

[18]  Bo Zhou,et al.  On Harary index , 2008 .

[19]  Mircea V. Diudea,et al.  Indices of Reciprocal Properties or Harary Indices , 1997, J. Chem. Inf. Comput. Sci..

[20]  Yi-Zheng Fan,et al.  The connectivity and the Harary index of a graph , 2015, Discret. Appl. Math..

[21]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[22]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[23]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[24]  Lihua Feng,et al.  The Harary index of trees , 2011, 1104.0920.

[25]  Dusanka Janezic,et al.  Graph-Theoretical Matrices in Chemistry , 2015 .

[26]  Yongtang Shi,et al.  On Wiener polarity index of bicyclic networks , 2016, Scientific Reports.

[27]  Kinkar Chandra Das,et al.  On Harary index of graphs , 2011, Discret. Appl. Math..