Nonlocal Approximation of Nonisotropic Free-Discontinuity Problems

We prove that a class of free-discontinuity problems with nonisotropic bulk and surface energy densities is approximated, in the sense of $\Gamma$-convergence, by suitable families of nonlocal integral functionals. Some connections with the Wulff set are also pointed out.

[1]  Andrea Braides,et al.  Integral representation results for functionals defined on SBV(?; Rm) , 1996 .

[2]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[3]  C. Davini A proposal for a continuum theory of defective crystals , 1986 .

[4]  L. Ambrosio Variational problems in SBV and image segmentation , 1989 .

[5]  Guido Cortesani,et al.  Sequences of Non‐Local Functionals Which Approximate Free‐Discontinuity Problems , 1998 .

[6]  E. Virga Drops of nematic liquid crystals , 1989 .

[7]  M. Carriero,et al.  Plastic free discontinuities and Special Bounded Hessian , 1992 .

[8]  Andrea Braides On the non-local approximation of free-discontinuity problems , 1998 .

[9]  W. Ziemer Weakly differentiable functions , 1989 .

[10]  Andrea Braides,et al.  The interaction between bulk energy and surface energy in multiple integrals , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  H. Fédérer Geometric Measure Theory , 1969 .

[12]  Andrea Braides,et al.  Non-local approximation of the Mumford-Shah functional , 1997 .

[13]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[14]  Andrea Braides,et al.  Free-discontinuity problems generated by singular perturbation , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  Irene Fonseca,et al.  A uniqueness proof for the Wulff Theorem , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  I. Fonseca The Wulff theorem revisited , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  L. Evans Measure theory and fine properties of functions , 1992 .

[18]  I. Fonseca,et al.  Equilibrium configurations of defective crystals , 1992 .

[19]  L. Ambrosio On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .

[20]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[21]  A. Dinghas,et al.  Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen , 1943 .

[22]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[23]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[24]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[25]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[26]  F. Almgren,et al.  Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints , 1975 .

[27]  Luigi Ambrosio,et al.  The Space SBV(Ω) and Free Discontinuity Problems , 1993 .