Long-Run Accuracy of Variational Integrators in the Stochastic Context

This paper presents a Lie-Trotter splitting for inertial Langevin equations (geometric Langevin algorithm) and analyzes its long-time statistical properties. The splitting is defined as a composition of a variational integrator with an Ornstein-Uhlenbeck flow. Assuming that the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the splitting approximates the invariant measure of inertial Langevin equations to within the accuracy of the variational integrator in representing the Hamiltonian. In particular, if the variational integrator admits no energy error, then the method samples the invariant measure of inertial Langevin equations without error. Numerical validation is provided using explicit variational integrators with first-, second-, and fourth-order accuracy.

[1]  H. Owhadi,et al.  Stochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems , 2007, 0709.2222.

[2]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[3]  Houman Owhadi,et al.  Ballistic Transport at Uniform Temperature , 2007, 0710.1565.

[4]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[5]  Nawaf Bou-Rabee,et al.  A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..

[6]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[7]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[8]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[9]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[10]  Houman Owhadi,et al.  Boltzmann-Gibbs Preserving Langevin Integrators , 2007 .

[11]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[12]  Carsten Hartmann,et al.  An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics , 2008 .

[13]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[14]  L. Jay Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .

[15]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[16]  Eric Vanden-Eijnden,et al.  Second-order integrators for Langevin equations with holonomic constraints , 2006 .

[17]  Jesús A. Izaguirre,et al.  An impulse integrator for Langevin dynamics , 2002 .

[18]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[19]  D. Talay Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .

[20]  Denis Talay,et al.  Simulation and numerical analysis of stochastic differential systems : a review , 1990 .

[21]  G. Ciccotti,et al.  Algorithms for Brownian dynamics , 2003 .

[22]  Tony Shardlow,et al.  Splitting for Dissipative Particle Dynamics , 2002, SIAM J. Sci. Comput..

[23]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[24]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Pep Español,et al.  A stochastic Trotter integration scheme for dissipative particle dynamics , 2006, Math. Comput. Simul..

[26]  N. G.,et al.  Quasi-symplectic methods for Langevin-type equations , 2003 .

[27]  Kevin Burrage,et al.  Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..

[28]  G. Ciccotti,et al.  Projection of diffusions on submanifolds: Application to mean force computation , 2008 .

[29]  R. McLachlan,et al.  Conformal Hamiltonian systems , 2001 .

[30]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[31]  T. Lelièvre,et al.  An efficient sampling algorithm for variational Monte Carlo. , 2006, The Journal of chemical physics.

[32]  J. Ortega,et al.  Stochastic hamiltonian dynamical systems , 2007, math/0702787.

[33]  J. Ortega,et al.  REDUCTION, RECONSTRUCTION, AND SKEW-PRODUCT DECOMPOSITION OF SYMMETRIC STOCHASTIC DIFFERENTIAL EQUATIONS , 2007, 0705.3156.

[34]  Christian Soize,et al.  The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions , 1994, Series on Advances in Mathematics for Applied Sciences.

[35]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[36]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[37]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[38]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[39]  Andrew M. Stuart,et al.  Calculating effective diffusivities in the limit of vanishing molecular diffusion , 2008, J. Comput. Phys..

[40]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.