A lower bound for integer multiplication with read-once branching programs

A lower bound for integer multiplication with read-once branching programs

[1]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[2]  Christoph Meinel,et al.  Separating the Eraser Turing Machine Classes Le, NLe, co-NLe and Pe , 1988, International Symposium on Mathematical Foundations of Computer Science.

[3]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[4]  Manuel Blum,et al.  Equivalence of Free Boolean Graphs can be Decided Probabilistically in Polynomial Time , 1980, Inf. Process. Lett..

[5]  Srinivas Devadas,et al.  Probabilistic manipulation of Boolean functions using free Boolean diagrams , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Stephen Ponzio,et al.  Restricted branching programs and hardware verification , 1995 .

[7]  Matthias Krause,et al.  On Oblivious Branching Programs of Linear Length , 1991, Inf. Comput..

[8]  R. Bryant,et al.  Verification of Arithmetic Functions with Binary Moment Diagrams , 1994 .

[9]  Jacob A. Abraham,et al.  IBDDs: an efficient functional representation for digital circuits , 1992, [1992] Proceedings The European Conference on Design Automation.

[10]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[11]  Matthias Krause,et al.  Exponential Lower Bounds on the Complexity of Local and Real-time Branching Programs , 1988, Journal of Information Processing and Cybernetics.

[12]  Samuel R. Buss,et al.  The Graph of Multiplication is Equivalent to Counting , 1992, Inf. Process. Lett..

[13]  Noga Alon,et al.  Meanders and Their Applications in Lower Bounds Arguments , 1988, J. Comput. Syst. Sci..

[14]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[15]  Christoph Meinel,et al.  Modified Branching Programs and Their Computational Power , 1989, Lecture Notes in Computer Science.

[16]  Harry B. Hunt,et al.  On the Size of Binary Decision Diagrams Representing Boolean Functions , 1995, Theor. Comput. Sci..

[17]  Matthias Krause Lower Bounds for Depth-Restricted Branching Programs , 1991, Inf. Comput..

[18]  Stanislav Zák,et al.  An Exponential Lower Bound for One-Time-Only Branching Programs , 1984, MFCS.

[19]  Janos Simon,et al.  A New Lower Bound Theorem for Read-Only-Once Branching Programs and its Applications , 1992, Advances In Computational Complexity Theory.

[20]  Stasys Jukna,et al.  A Note on Read-k Times Branching Programs , 1994, RAIRO Theor. Informatics Appl..

[21]  Paul E. Dunne,et al.  Lower bounds on the complexity of 1-time only branching programs , 1985, FCT.

[22]  Srinivas Devadas,et al.  Boolean satisfiability and equivalence checking using general binary decision diagrams , 1991, [1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[23]  Endre Szemerédi,et al.  A Lower Bound for Read-Once-Only Branching Programs , 1987, J. Comput. Syst. Sci..

[24]  Stasys Jukna The Effect of Null-Chains on the Complexity of Contact Schemes , 1989, FCT.

[25]  Ingo Wegener,et al.  Graph Driven BDDs - A New Data Structure for Boolean Functions , 1995, Theor. Comput. Sci..

[26]  Stasys Jukna The Graph of Integer Multiplication is Hard for Read-k-Times Networks , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[27]  IEEE Transactions on Computers , Computing in Science & Engineering.

[28]  Stasys Jukna,et al.  Entropy of Contact Circuits and Lower Bounds on Their Complexity , 1988, Theor. Comput. Sci..

[29]  Ingo Wegener,et al.  Optimal Lower Bounds on the Depth of Polynomial-Size Threshold Circuits for Some Arithmetic Functions , 1993, Inf. Process. Lett..

[30]  Jordan Gergov,et al.  Time-Space Tradeoffs for Integer Multiplication on Various Types of Input Oblivious Sequential Machines , 1994, Inf. Process. Lett..

[31]  Erik Meineche Schmidt,et al.  The Complexity of Equivalence and Containment for Free Single Variable Program Schemes , 1978, ICALP.

[32]  Ingo Wegener Efficient data structures for Boolean functions , 1994, Discret. Math..

[33]  Michael E. Saks,et al.  Combinatorial characterization of read-once formulae , 1993, Discret. Math..

[34]  Ingo Wegener,et al.  On the complexity of branching programs and decision trees for clique functions , 1988, JACM.

[35]  William Joseph Masek,et al.  A fast algorithm for the string editing problem and decision graph complexity , 1976 .

[36]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[37]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[38]  Petr Savický,et al.  A large lower bound for 1-branching programs , 1996, Electron. Colloquium Comput. Complex..

[39]  Beate Bollig,et al.  Read-once Projections and Formal Circuit Verification with Binary Decision Diagrams , 1996, STACS.

[40]  Christoph Meinel,et al.  Separating the Eraser Turing Machine Classes L_e, NL_e, co-NL_e and P_e , 1991, Theor. Comput. Sci..

[41]  Beate Bollig,et al.  On the Power of Different Types of Restricted Branching Programs , 1994, Electron. Colloquium Comput. Complex..

[42]  Randal E. Bryant,et al.  On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication , 1991, IEEE Trans. Computers.