Prediction of cross-shore sandbar volumes using neural network approach

Correct estimation of bar volumes, wave height, wave period and median sediment diameter is crucial for the designing of coastal structures and water quality problem. In this study, bar volumes caused by cross-shore sediment transport were investigated using a physical model and obtained 64 experimental data considering the wave steepness (H0/L0) and period (T), the bed slope (m) and the sediment diameter (d50). Artificial neural network (ANN) and multi-linear regression (MLR) are used for predicting the bar volumes. A multi layer perceptron is used as the ANN structure. The results show that the ANN model estimates are much closer to the experimental data than the MLR model estimates.

[1]  Ozgur Kisi,et al.  Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data , 2005 .

[2]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[3]  Ozgur Kisi,et al.  River Flow Modeling Using Artificial Neural Networks , 2004 .

[4]  Randall A. Wise,et al.  Sbeach: Numerical Model for Simulating Storm-Induced Beach Change, Report 3 : User's manual , 1989 .

[5]  I. Nayak EQUILIBRIUM PROFILES OF MODEL BEACHES , 1970 .

[6]  M. Demirci,et al.  Experimental investigation of cross-shore sandbar volumes , 2014, Journal of Coastal Conservation.

[7]  Daniel T. Cox,et al.  Water Level Observations and Short-Term Predictions Including Meteorological Events for Entrance of Galveston Bay, Texas , 2002 .

[8]  M. Y. El-Bakry Feed forward neural networks modeling for K-P interactions , 2003 .

[9]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[10]  Richard Labib,et al.  Performance of Neural Networks in Daily Streamflow Forecasting , 2002 .

[11]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[12]  Fatih Üneş,et al.  Prediction of Density Flow Plunging Depth in Dam Reservoirs: An Artificial Neural Network Approach , 2010 .

[13]  Y. Iwagaki,et al.  LABORATORY STUDY OF SCALE EFFECTS IN TWO-DIMENSIONAL BEACH PROCESSES , 2011 .

[14]  Joos Vandewalle,et al.  Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin , 2003 .

[15]  Tai-Wen Hsu Geometric characteristics of storm-beach profiles caused by inclined waves , 1998 .

[16]  K. Günaydın,et al.  Characteristics of coastal erosion geometry under regular and irregular waves , 2003 .

[17]  Mehmet Özger,et al.  Temporal significant wave height estimation from wind speed by perceptron Kalman filtering , 2004 .

[18]  Murat İhsan Kömürcü,et al.  Determination of bar parameters caused by cross-shore sediment movement , 2007 .

[19]  M. Sami Aköz,et al.  Investigation of bar parameters occurred by cross-shore sediment transport , 2013 .

[20]  M. C. Deo,et al.  Forecasting wind with neural networks , 2003 .

[21]  G. Różyński Data-driven modeling of multiple longshore bars and their interactions , 2003 .

[22]  H. K. Cigizoglu,et al.  ESTIMATION AND FORECASTING OF DAILY SUSPENDED SEDIMENT DATA BY MULTI-LAYER PERCEPTRONS , 2004 .

[23]  Eugen Rusu,et al.  Modelling of wave–current interactions at the mouths of the Danube , 2010 .

[24]  Edward K. Noda Equilibrium Beach Profile Scale-Model Relationship , 1972 .

[25]  Özgür Kisi,et al.  River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques , 2012, Comput. Geosci..

[26]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[27]  J. W. Johnson,et al.  Scale effects in hydraulic models involving wave motion , 1949 .

[28]  Mustafa Demirci,et al.  Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches , 2012, Neural Computing and Applications.

[29]  Murat İhsan Kömürcü,et al.  Prediction of wave parameters by using fuzzy inference system and the parametric models along the south coasts of the Black Sea , 2014 .

[30]  K. Horikawa,et al.  TWO-DIMENSIONAL BEACH TRANSFORMATION DUE TO WAVES , 1974 .

[31]  M. Sami Aköz,et al.  An investigation on the formation of submerged bar under surges in sandy coastal region , 2012, China Ocean Engineering.

[32]  M. Larson Model of Beach Profile Change Under Random Waves , 1996 .

[33]  Dong-Sheng Jeng,et al.  Application of artificial neural networks in tide-forecasting , 2002 .

[34]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[35]  H. K. Cigizoglu,et al.  Artificial intelligence methods in breakwater damage ratio estimation , 2005 .

[36]  M. R. Gourlay BEACHES: PROFILES, PROCESSES AND PERMEABILITY , 1980 .

[37]  Dina Makarynska,et al.  Filling gaps in wave records with artificial neural networks , 2005 .

[38]  Nedim Tutkun,et al.  Estimation of the beach bar parameters using the genetic algorithms , 2008, Appl. Math. Comput..