Considerations for single-mode fiber systems

The intrinsic low-dispersion and low-attenuation properties of single-mode fibers between 1.3 and 1.6 μm make them attractive for use in high-capacity, long-haul digital systems. In this paper we discuss some fundamental performance limitations — such as attenuation, bandwidth, mode-partition noise, burst-type error, and receiver sensitivities — for systems with bit rates above 274 Mb/s. Also, we discuss the maximum capacity achievable by either using a single channel at the minimum-dispersion wavelength, or multiple wavelength-multiplexed channels with equal, but necessarily lower, bit rates. We conclude that the characteristics of present laser diodes limit repeater spacing to lengths far less than the potential capacity expected from single-mode fibers. For total capacity of bit rates less than 1 Gb/s, wavelength multiplexing is found to offer longer repeater spacings than single-wavelength systems.

[1]  Katsunari Okamoto,et al.  Dispersion minimisation in single-mode fibres over a wide spectral range , 1979 .

[2]  Katsuyuki Utaka,et al.  Single-mode oscillation under high-speed direct modulation in GaInAsP/InP integrated twin-guide lasers with distributed Bragg reflectors , 1980 .

[3]  C. A. Burrus,et al.  InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 µm wavelength , 1981 .

[4]  O. Mikami,et al.  A low-noise n+np germanium avalanche photodiode , 1981, IEEE Journal of Quantum Electronics.

[5]  K. Ogawa Noise caused by GaAs mesfets in optical receivers , 1981, The Bell System Technical Journal.

[6]  Leonard George Cohen,et al.  Tailoring zero chromatic dispersion into the 1.5-1.6 μm low-loss spectral region of single-mode fibres , 1979 .

[7]  P.I. Suciu,et al.  High-speed NMOS circuits made with X-ray lithography and reactive sputter etching , 1980, IEEE Electron Device Letters.

[8]  R. Leheny,et al.  Characterization of In0.53Ga0.47As photodiodes exhibiting low dark current and low junction capacitance , 1981, IEEE Journal of Quantum Electronics.

[9]  Kiyoshi Nakagawa,et al.  Detailed evaluation of an attainable repeater spacing for fibre transmission at 1.3 μm and 1.55 μm wavelengths , 1979 .

[10]  K. Nawata,et al.  Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser , 1977 .

[11]  D. Marcuse Loss analysis of single-mode fiber splices , 1977, The Bell System Technical Journal.

[12]  Mitsuho Yasu,et al.  VAD single mode fibre with 0.2 dB/km loss , 1981 .

[13]  C. A. Burrus,et al.  High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.

[14]  K. Ogawa,et al.  Analysis of mode partition noise in laser transmission systems , 1982, IEEE Journal of Quantum Electronics.

[15]  K. Nawata,et al.  An 800 Mbit/s optical transmission experiment using a single-mode fiber , 1977, IEEE Journal of Quantum Electronics.

[16]  T. Kimura,et al.  Single-mode systems and components for longer wavelengths (Invited Paper) , 1979 .

[17]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[18]  H. Nakagome,et al.  Characteristics in InGaAs/InP avalanche photodiodes with separated absorption and multiplication regions , 1981, IEEE Journal of Quantum Electronics.

[19]  S. Kobayashi,et al.  Coherence of injection phase-locked AlGaAs semiconductor laser , 1980 .

[20]  K. Nakagawa,et al.  Laser Mode Partition Noise Evaluation for Optical Fiber Transmission , 1980, IEEE Trans. Commun..

[21]  L. Cohen,et al.  Tailoring the shapes of dispersion spectra to control bandwidths in single-mode fibers. , 1982, Optics letters.

[22]  H. J. Boll,et al.  A long-wavelength optical receiver using a short-channel Si-MOSFET , 1981, The Bell System Technical Journal.

[23]  K. Ogawa,et al.  Baseband characteristics of long-wavelength l.e.d. systems , 1980 .

[24]  K. Ogawa,et al.  GaAs f.e.t. transimpedance front-end design for a wideband optical receiver , 1979 .