Wave kinetics of random fibre lasers

Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. Kinetic theory is a mathematical framework that is used to describe non-linear systems with a large number of degrees of freedom. Here, the authors develop a concept of active wave kinetics of cyclic systems and describe the function of random fibre laser.

[1]  C. Conti,et al.  Switching and amplification in disordered lasing resonators , 2013, Nature Communications.

[2]  Sergey A. Babin,et al.  Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser , 2007 .

[3]  Roman J. B. Dietz,et al.  Co-existence of strongly and weakly localized random laser modes , 2009 .

[4]  P. Stano,et al.  Suppression of interactions in multimode random lasers in the Anderson localized regime , 2012, Nature Photonics.

[5]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.

[6]  Pierre Suret,et al.  Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics , 2014 .

[7]  Brandon Redding,et al.  Physics and applications of random lasers , 2014, 2014 The European Conference on Optical Communication (ECOC).

[8]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[9]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[10]  M. V. Grekov,et al.  Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber. , 2000, Optics letters.

[11]  J. Garnier,et al.  Toward a wave turbulence formulation of statistical nonlinear optics , 2012 .

[12]  C.P. Sandbank Fibre Optic Communication Systems , 1977, 1977 7th European Microwave Conference.

[13]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[14]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I , 1992 .

[15]  Alan C. Newell,et al.  Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schro¨dinger equation , 1992 .

[16]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[17]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[18]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[19]  Vladislav V. Yakovlev,et al.  Bright emission from a random Raman laser , 2014, Nature Communications.

[20]  C. De Dominicis,et al.  TECHNIQUES DE RENORMALISATION DE LA THÉORIE DES CHAMPS ET DYNAMIQUE DES PHÉNOMÈNES CRITIQUES , 1976 .

[21]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[22]  L. Peliti,et al.  Field-theory renormalization and critical dynamics aboveTc: Helium, antiferromagnets, and liquid-gas systems , 1978 .

[23]  Bahram Jalali,et al.  Fluctuations and correlations in modulation instability , 2012, Nature Photonics.

[24]  S. Smirnov,et al.  Modeling of spectral and statistical properties of a random distributed feedback fiber laser. , 2013, Optics express.

[25]  H. Wyldjr Formulation of the theory of turbulence in an incompressible fluid , 1961 .

[26]  S. Babin,et al.  Random distributed feedback fibre lasers , 2014 .

[27]  Vladimir E. Zakharov,et al.  Turbulence in Integrable Systems , 2009 .

[28]  Sergio Rica,et al.  Observation of the kinetic condensation of classical waves , 2012, Nature Physics.

[29]  M. Csele,et al.  Fundamentals of Light Sources and Lasers: Csele/Lights and Lasers , 2004 .

[30]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[31]  Peter A. E. M. Janssen,et al.  Nonlinear Four-Wave Interactions and Freak Waves , 2003 .

[32]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[33]  Oleg G. Okhotnikov,et al.  Fiber Lasers: OKHOTNIKOV:FIBER LASERS O-BK , 2012 .

[34]  N. Lawandy,et al.  Laser action in strongly scattering media , 1994, Nature.

[35]  Valérie Doya,et al.  Condensation and thermalization of classsical optical waves in a waveguide , 2011 .

[36]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[37]  D. C. Agrawal Fibre Optic Communication , 2005 .

[38]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I: Wave Turbulence , 1992 .

[39]  Sergei K. Turitsyn,et al.  Turbulent broadening of optical spectra in ultralong Raman fiber lasers , 2008 .

[40]  L. Larger,et al.  Real-time full bandwidth measurement of spectral noise in supercontinuum generation , 2012, Scientific reports.

[41]  L. Boltzmann On Certain Questions of the Theory of Gases , 1895, Nature.