Enhanced DNA repair through droplet formation and p53 oscillations

[1]  Quentin Liu,et al.  MRNIP condensates promote DNA double-strand break sensing and end resection , 2022, Nature Communications.

[2]  May Yin Lee,et al.  Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Y. Cordeiro,et al.  Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands† , 2021, Chemical science.

[4]  Sandeep Krishna,et al.  A tale of two rhythms: Locked clocks and chaos in biology. , 2021, Cell systems.

[5]  T. Mora,et al.  Physical observables to determine the nature of membrane-less cellular sub-compartments , 2021, bioRxiv.

[6]  David Zwicker,et al.  Controlling biomolecular condensates via chemical reactions , 2021, Journal of the Royal Society Interface.

[7]  T. Mora,et al.  Single molecule microscopy reveals key physical features of repair foci in living cells , 2020, bioRxiv.

[8]  K. Kamagata,et al.  Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains , 2020, Scientific Reports.

[9]  M. Sadeghi,et al.  A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle , 2020, Bulletin of Mathematical Biology.

[10]  M. Jensen,et al.  Inferring Leading Interactions in the p53/Mdm2/Mdmx Circuit through Live-Cell Imaging and Modeling. , 2019, Cell systems.

[11]  J. Söding,et al.  Mechanisms for Active Regulation of Biomolecular Condensates. , 2019, Trends in cell biology.

[12]  N. Ashgriz,et al.  DNA repair by Rad52 liquid droplets , 2019, Nature Communications.

[13]  F. d’Adda di Fagagna,et al.  Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage response factors , 2019, Nature Cell Biology.

[14]  M. Altmeyer,et al.  Phase separation of 53BP1 determines liquid‐like behavior of DNA repair compartments , 2019, The EMBO journal.

[15]  S. Krishna,et al.  On chaotic dynamics in transcription factors and the associated effects in differential gene regulation , 2019, Nature Communications.

[16]  F. Jülicher,et al.  Physics of active emulsions , 2018, Reports on progress in physics. Physical Society.

[17]  F. Liu,et al.  Cell type–dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance , 2018, Science Advances.

[18]  Jia-Yun Chen,et al.  Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest. , 2019, Molecular cell.

[19]  Eugene W. Myers,et al.  Cell Detection with Star-convex Polygons , 2018, MICCAI.

[20]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[21]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[22]  G. Lahav,et al.  p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM , 2017, Science Signaling.

[23]  Ryan A. Kellogg,et al.  Noise Induces Hopping between NF-κB Entrainment Modes , 2016, Cell systems.

[24]  John J. Tyson,et al.  Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor Period 2 , 2016, Proceedings of the National Academy of Sciences.

[25]  G. Lahav,et al.  Schedule-dependent interaction between anticancer treatments , 2016, Science.

[26]  Jae Kyoung Kim,et al.  The relationship between stochastic and deterministic quasi-steady state approximations , 2015, BMC Systems Biology.

[27]  A. Hyman,et al.  Suppression of Ostwald ripening in active emulsions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  C. Finkielstein,et al.  Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling , 2015, Molecular biology of the cell.

[29]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[30]  J. Shah,et al.  Activation and control of p53 tetramerization in individual living cells , 2013, Proceedings of the National Academy of Sciences.

[31]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[32]  H. Xin,et al.  In situ observation of oscillatory growth of bismuth nanoparticles. , 2012, Nano letters.

[33]  Sandeep Krishna,et al.  Modeling oscillatory control in NF-κB, p53 and Wnt signaling. , 2010, Current opinion in genetics & development.

[34]  Ryoichiro Kageyama,et al.  The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. , 2009, Genes & development.

[35]  A. Hyman,et al.  Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation , 2009, Science.

[36]  G. Lahav,et al.  Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. , 2008, Molecular cell.

[37]  Takeharu Nagai,et al.  Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein , 2008, Nature Methods.

[38]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[39]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[40]  R. Rothstein,et al.  Choreography of the DNA Damage Response Spatiotemporal Relationships among Checkpoint and Repair Proteins , 2004, Cell.

[41]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[42]  K. Sneppen,et al.  Sustained oscillations and time delays in gene expression of protein Hes1 , 2003, FEBS letters.

[43]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[44]  K. Sneppen,et al.  Time delay as a key to apoptosis induction in the p53 network , 2002, cond-mat/0207236.

[45]  M. Cates,et al.  Osmotic stabilization of concentrated emulsions and foams , 2001, cond-mat/0101300.

[46]  H. Yokota,et al.  Size-dependent positioning of human chromosomes in interphase nuclei. , 2000, Biophysical journal.

[47]  P. Hahnfeldt,et al.  Evolution of DNA damage in irradiated cells , 1992, Journal of mathematical biology.

[48]  A. A. Sobyanin,et al.  Diffusive decay of the metastable state in periodic field , 1986 .

[49]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[50]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .