Active layer dynamics drives a transition to biofilm fingering

[1]  C. Nadell,et al.  Quantitative image analysis of microbial communities with BiofilmQ , 2021, Nature Microbiology.

[2]  O. Hallatschek,et al.  Environmental heterogeneity can tip the population genetics of range expansions , 2019, eLife.

[3]  H. Stone,et al.  Mechanical instability and interfacial energy drive biofilm morphogenesis , 2019, eLife.

[4]  Bartlomiej Waclaw,et al.  Bacterial growth: a statistical physicist’s guide , 2018, Reports on progress in physics. Physical Society.

[5]  Aaron R Dinner,et al.  Nonequilibrium phase diagrams for actomyosin networks. , 2018, Soft matter.

[6]  Sara Mitri,et al.  Cooperation, competition and antibiotic resistance in bacterial colonies , 2018, The ISME Journal.

[7]  H. Stone,et al.  Verticalization of bacterial biofilms , 2018, Nature Physics.

[8]  K. Takeuchi An appetizer to modern developments on the Kardar–Parisi–Zhang universality class , 2017, Physica A: Statistical Mechanics and its Applications.

[9]  P. G. Jayathilake,et al.  A mechanistic Individual-based Model of microbial communities , 2017, PloS one.

[10]  E. Albano,et al.  Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium. , 2016, Physical review. E.

[11]  Oskar Hallatschek,et al.  Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments , 2016, Nature Communications.

[12]  Knut Drescher,et al.  Spatial structure, cooperation and competition in biofilms , 2016, Nature Reviews Microbiology.

[13]  P. Stewart,et al.  Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections , 2016, npj Biofilms and Microbiomes.

[14]  E. Ben-Jacob,et al.  Uniform modeling of bacterial colony patterns with varying nutrient and substrate , 2016 .

[15]  Thomas Bjarnsholt,et al.  Role of Multicellular Aggregates in Biofilm Formation , 2016, mBio.

[16]  Bonnie L. Bassler,et al.  Architectural transitions in Vibrio cholerae biofilms at single-cell resolution , 2016, Proceedings of the National Academy of Sciences.

[17]  S. Diggle,et al.  Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates , 2015, PloS one.

[18]  K. Takeuchi,et al.  A KPZ Cocktail-Shaken, not Stirred... , 2015, 1505.01910.

[19]  Eshel Ben-Jacob,et al.  Mechanically-driven phase separation in a growing bacterial colony , 2015, Proceedings of the National Academy of Sciences.

[20]  Guillermo L. Monroy,et al.  Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. , 2015, Environmental science & technology.

[21]  Matthew A. A. Grant,et al.  The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies , 2014, Journal of The Royal Society Interface.

[22]  Erik Luijten,et al.  Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms , 2013, Nature.

[23]  B. Waclaw,et al.  Mechanically driven growth of quasi-two-dimensional microbial colonies. , 2013, Physical review letters.

[24]  D. Head,et al.  Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Andrew Phillips,et al.  Computational modeling of synthetic microbial biofilms. , 2012, ACS synthetic biology.

[26]  Cristian Picioreanu,et al.  iDynoMiCS: next-generation individual-based modelling of biofilms. , 2011, Environmental microbiology.

[27]  Juan A. Bonachela,et al.  Universality in Bacterial Colonies , 2011, 1108.1937.

[28]  Eric S Gilbert,et al.  Faculty Opinions recommendation of iDynoMiCS: next-generation individual-based modelling of biofilms. , 2011 .

[29]  Carey D. Nadell,et al.  Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation , 2010, PLoS Comput. Biol..

[30]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[31]  T. Tolker-Nielsen,et al.  Pattern formation in Pseudomonas aeruginosa biofilms. , 2008, Current opinion in microbiology.

[32]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[33]  D. Nelson,et al.  Genetic drift at expanding frontiers promotes gene segregation , 2007, Proceedings of the National Academy of Sciences.

[34]  Anders Heyden,et al.  Three‐dimensional biofilm model with individual cells and continuum EPS matrix , 2006, Biotechnology and bioengineering.

[35]  Mark C M van Loosdrecht,et al.  A framework for multidimensional modelling of activity and structure of multispecies biofilms. , 2005, Environmental microbiology.

[36]  Haluk Beyenal,et al.  Three-dimensional biofilm structure quantification. , 2004, Journal of microbiological methods.

[37]  Cristian Picioreanu,et al.  A modelling study of the activity and structure of biofilms in biological reactors , 2004 .

[38]  W. Frensley Basic Concepts for Simple and Complex Liquids , 2004 .

[39]  A. Brú,et al.  Anomalous scaling of multivalued interfaces , 2003 .

[40]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[41]  Philip S. Stewart,et al.  Diffusion in Biofilms , 2003, Journal of bacteriology.

[42]  Z. Lewandowski,et al.  The double substrate growth kinetics of Pseudomonas aeruginosa , 2003 .

[43]  Richard A. L. Jones Soft Condensed Matter , 2002 .

[44]  Isaac Klapper,et al.  Finger Formation in Biofilm Layers , 2002, SIAM J. Appl. Math..

[45]  J W Wimpenny,et al.  Individual-based modelling of biofilms. , 2001, Microbiology.

[46]  Eshel Ben-Jacob,et al.  From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria , 2000 .

[47]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[48]  M. Mimura,et al.  Formation of colony patterns by a bacterial cell population , 1999 .

[49]  J J Heijnen,et al.  Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. , 1998, Biotechnology and bioengineering.

[50]  M. Mimura,et al.  INTERFACE GROWTH AND PATTERN FORMATION IN BACTERIAL COLONIES , 1998 .

[51]  Vadim N. Smelyanskiy,et al.  Fluctuations, Escape, and Nucleation in Driven Systems: Logarithmic Susceptibility , 1997 .

[52]  M. Matsushita,et al.  Morphological Diversity of the Colony Produced by Bacteria Proteus mirabilis , 1996 .

[53]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[54]  Yicheng Zhang,et al.  Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics , 1995 .

[55]  B. Rittmann,et al.  Development and experimental evaluation of a steady‐state, multispecies biofilm model , 1992, Biotechnology and bioengineering.

[56]  M. Fisher,et al.  Finite-size effects at first-order transitions , 1983 .

[57]  R. Battino,et al.  The Solubility of Oxygen and Ozone in Liquids , 1983 .

[58]  J. Langer Instabilities and pattern formation in crystal growth , 1980 .

[59]  J. Monod The Growth of Bacterial Cultures , 1949 .