FORECASTING FOR THE ORDERING AND STOCK- HOLDING OF CONSUMABLE SPARE PARTS

[1]  T. M. Whitin,et al.  A method for calculating optimal inventory levels and delivery time , 1955 .

[2]  Inventory Management of Slow-Moving Parts , 1956 .

[3]  W. Karush A Queuing Model for an Inventory Problem , 1957 .

[4]  F. N. David,et al.  Principles and procedures of statistics. , 1961 .

[5]  Martin J. Beckmann,et al.  An Inventory Model for Arbitrary Interval and Quantity Distributions of Demand , 1961 .

[6]  G. H. Mitchell,et al.  Problems of Controlling Slow-Moving Engineering Spares , 1962 .

[7]  Martin J. Beckmann Dynamic Programming and Inventory Control , 1964 .

[8]  Edward A. Silver,et al.  Bayesian Determination of the Reorder Point of a Slow Moving Item , 1965 .

[9]  A. F. Veinott,et al.  Computing Optimal (s, S) Inventory Policies , 1965 .

[10]  R. Adelson Compound Poisson Distributions , 1966 .

[11]  G. J. Feeney,et al.  The S-1, S Inventory Policy Under Compound Poisson Demand , 1966 .

[12]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[13]  C. C. Sherbrooke DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION. , 1968 .

[14]  Barnard E. Smith,et al.  A Learning Model for Inventory of Slow-Moving Items , 1969 .

[15]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[16]  Colin E. Bell Improved Algorithms for Inventory and Replacement-Stocking Problems , 1970 .

[17]  Sheldon E. Haber,et al.  A methodology for estimating expected usage of repair parts with application to parts with no usage history , 1970 .

[18]  Edward A. Silver,et al.  Cost-Minimizing Inventory Control of Items Having A Special Type of Erratic Demand Pattern , 1971 .

[19]  P. P. Schoderbek Management systems , 1971 .

[20]  F. G. Foster,et al.  The Effect of the Demand Distribution in Inventory Models Combining Holding, Stockout and Re-Order Costs , 1971 .

[21]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[22]  George F. Brown,et al.  A Bayesian approach to demand estimation and inventory provisioning , 1973 .

[23]  A. Vijaya Rao,et al.  A Comment on: Forecasting and Stock Control for Intermittent Demands , 1973 .

[24]  Stratton C. Jaquette,et al.  The initial provisioning decision for insurance type items , 1973 .

[25]  J. D. Croston Stock Levels for Slow-Moving Items , 1974 .

[26]  B. D. Sivazlian A Continous-Review (s, S) Inventory System with Arbitrary Interarrival Distribution between Unit Demand , 1974, Oper. Res..

[27]  Edward A. Silver,et al.  A coordinated inventory control system for compound Poisson demand and zero lead time , 1975 .

[28]  Edward P. C. Kao A Discrete Time Inventory Model with Arbitrary Interval and Quantity Distributions of Demand , 1975, Oper. Res..

[29]  Chris Chatfield,et al.  Statistics for Technology (A Course in Applied Statistics) , 1984 .

[30]  E. Ritchie,et al.  Renewal theory forecasting for stock control , 1977 .

[31]  Edward A. Silver,et al.  Note---A Graphical Aid for Determining Optimal Inventories in a Unit Replenishment Inventory System , 1977 .

[32]  Y. Dirickx,et al.  A continuous review inventory model with compound poisson demand process and stochastic lead time , 1977 .

[33]  Compound distributions with efficient computation in inventory model applications , 1977 .

[34]  E. Silver,et al.  s, S Policies Under Continuous Review and Discrete Compound Poisson Demand , 1978 .

[35]  J. B. Ward Determining Reorder Points When Demand is Lumpy , 1978 .

[36]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[37]  Godwin C. Ovuworie Introduction to Operations Research Techniques , 1978 .

[38]  Eliezer Naddor,et al.  Note---Sensitivity to Distributions in Inventory Systems , 1978 .

[39]  Michèle Hibon,et al.  Accuracy of Forecasting: An Empirical Investigation , 1979 .

[40]  Graham K. Rand,et al.  Decision Systems for Inventory Management and Production Planning , 1979 .

[41]  F. de P. Hanika Materials Management Systems. A Modular Library , 1979 .

[42]  L. J. Thomas,et al.  Are Multi-Echelon Inventory Methods Worth Implementing in Systems with Low-Demand-Rate Items? , 1980 .

[43]  F. Johnston An Interactive Stock Control System with a Strategic Management Role , 1980 .

[44]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[45]  Steven Nahmias,et al.  The logarithmic poisson gamma distribution: A model for leadtime demand , 1982 .

[46]  T. Williams Reorder Levels for Lumpy Demand , 1982 .

[47]  Arnold O. Allen,et al.  Probability, statistics and queueing theory - with computer science applications (2. ed.) , 1981, Int. CMG Conference.

[48]  C. R. Mitchell,et al.  An Analysis of Air Force EOQ Data with an Application to Reorder Point Calculation , 1983 .

[49]  John E. Hanke,et al.  Statistical decision models for management , 1983 .

[50]  L. Valadares Tavares,et al.  A Binary Decision Model for the Stock Control of Very Slow Moving Items , 1983 .

[51]  Uttarayan Bagchi,et al.  THE HERMITE DISTRIBUTION AS A MODEL OF DEMAND DURING LEAD TIME FOR SLOW‐MOVING ITEMS , 1983 .

[52]  T. Williams Stock Control with Sporadic and Slow-Moving Demand , 1984 .

[53]  Chris Chatfield,et al.  Statistics for Technology-A Course in Applied Statistics. , 1984 .

[54]  John L. Kling,et al.  A comparison of multivariate forecasting procedures for economic time series , 1985 .

[55]  Marcus O'Connor,et al.  An examination of the accuracy of judgmental extrapolation of time series , 1985 .

[56]  K. Mak,et al.  A Simple Model for Computing (s, S) Inventory Policies when Demand is Lumpy , 1986 .

[57]  David Wright,et al.  Forecasting Data Published at Irregular Time Intervals Using an Extension of Holt's Method , 1986 .

[58]  G. Capon,et al.  Evaluation of forecasting methods for decision support , 1986 .

[59]  R. Watson,et al.  The Effects of Demand-Forecast Fluctuations on Customer Service and Inventory Cost When Demand is Lumpy , 1987 .

[60]  Eisenhower C. Etienne,et al.  A simple and robust model for computing the service level impact of lot sizes in continuous and lumpy demand contexts , 1987 .

[61]  Carl R. Schultz Forecasting and Inventory Control for Sporadic Demand Under Periodic Review , 1987 .

[62]  Uttarayan Bagchi Modeling lead‐time demand for lumpy demand and variable lead time , 1987 .

[63]  Ralph D. Snyder,et al.  Control of inventories with intermittent demand , 1989 .

[64]  Urban Wemmerlöv,et al.  The behavior of lot-sizing procedures in the presence of forecast errors , 1989 .

[65]  Robert Pavur,et al.  Introduction to business statistics: A computer integrated approach , 1989 .

[66]  Jr. Everette S. Gardner,et al.  Evaluating forecast performance in an inventory control system , 1990 .

[67]  Robert Fildes,et al.  Forecasting Systems for Production and Inventory Control , 1992 .

[68]  Fred L. Collopy,et al.  Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons , 1992 .

[69]  T. Willemain,et al.  Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method , 1994 .

[70]  B. L. Foote On the implementation of a control-based forecasting system for aircraft spare parts procurement , 1995 .

[71]  Chrwan-Jyh Ho,et al.  Examining the impact of demand lumpiness on the lot-sizing performance in MRP systems , 1995 .

[72]  J. E. Boylan,et al.  Forecasting intermittent demand: A comparative evaluation of croston's method. Comment , 1996 .

[73]  K. L. Mak SYNTHESIS OF JOINT REPLENISHMENT POLICIES FOR INVENTORY SYSTEMS WHEN DEMAND IS LUMPY , 1996 .

[74]  J. Boylan,et al.  Forecasting for Items with Intermittent Demand , 1996 .

[75]  Brian G. Kingsman,et al.  Selecting the best periodic inventory control and demand forecasting methods for low demand items , 1997 .

[76]  J. Bradford,et al.  Estimating the demand pattern for C category items , 1997 .

[77]  Robert Fildes,et al.  Generalising about univariate forecasting methods: Further empirical evidence , 1998 .

[78]  Ag Ton de Kok,et al.  On the (R,s,Q) inventory model when demand is modelled as a compound Bernoulli process , 1998 .

[79]  George Q. Huang,et al.  Optimal inventory control of lumpy demand items using genetic algorithms , 1999 .

[80]  Roberto Verganti,et al.  A simulation framework for forecasting uncertain lumpy demand , 1999 .

[81]  H. H. Martin,et al.  Control of service parts , 1999 .

[82]  Ton G. de Kok,et al.  The impact of data collection on fill rate performance in the (R, s, Q) inventory model , 1999, J. Oper. Res. Soc..

[83]  Leo W. G. Strijbosch,et al.  A combined forecast—inventory control procedure for spare parts , 2000, J. Oper. Res. Soc..

[84]  J. Boylan,et al.  On the bias of intermittent demand estimates , 2001 .

[85]  Ralph Snyder,et al.  Forecasting sales of slow and fast moving inventories , 2002, Eur. J. Oper. Res..