Electrochemical performance of all-solid-state asymmetric supercapacitors based on Cu/Ni-Co(OH)2/Co4S3 self-supported electrodes

[1]  Y. Yang,et al.  The facile conversion of iron foam into copper-coated 3D porous cobalt ferrite/iron foam for high-performance asymmetric hybrid supercapacitor , 2021 .

[2]  Jinzhao Huang,et al.  Rational construction of phosphate layer to optimize Cu-regulated Fe3O4 as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries , 2021, Journal of Materials Science & Technology.

[3]  Jun Ma,et al.  One-step Preparation of Cobalt Nickel Oxide Hydroxide@Cobalt Sulfide Heterostructure Film on Ni Foam through Hydrothermal Electrodeposition for Supercapacitors , 2021, Surface and Coatings Technology.

[4]  Qiming Liu,et al.  MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor , 2021 .

[5]  X. Xia,et al.  Emerging of Heterostructure Materials in Energy Storage: A Review , 2021, Advanced materials.

[6]  Wenting Li,et al.  Hierarchical Porous Heterostructured Co(OH)2/CoSe2 nanoarray: A Controllable Design Electrode for Advanced Asymmetrical Supercapacitors , 2021 .

[7]  Z. Cui,et al.  Dual-phase nanostructuring as a route to flexible nanoporous metals with outstanding comprehensive mechanical properties , 2021, Science China Materials.

[8]  N. Kim,et al.  Fabrication of hierarchical Zn–Ni–Co–S nanowire arrays and graphitic carbon nitride/graphene for solid-state asymmetric supercapacitors , 2021 .

[9]  Qiming Liu,et al.  Hydroxide ion dependent α-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors , 2021, Journal of Materials Chemistry A.

[10]  Yifan Zheng,et al.  Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co-Doping Strategy for High-Performance Supercapacitor , 2021, Nano-micro letters.

[11]  J. Razal,et al.  In situ embedding of cobalt sulfide quantum dots among transition metal layered double hydroxides for high performance all-solid-state asymmetric supercapacitors , 2021, Journal of Materials Chemistry A.

[12]  Qiming Liu,et al.  A novel fabricated conductive substrate for enhancing the mass loading of NiCoLDH nanosheets for high areal specific capacity in hybrid supercapacitors , 2020 .

[13]  Qiming Liu,et al.  MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity , 2020 .

[14]  Fei Chen,et al.  Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors. , 2020, Journal of colloid and interface science.

[15]  Zhongai Hu,et al.  Nickel foam-supported starfish-like Ni(OH)2@CoS nanostructure with obvious core–shell heterogeneous interfaces for hybrid supercapacitors application , 2020, Journal of Materials Science.

[16]  Qiang Wu,et al.  Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. , 2020, Journal of colloid and interface science.

[17]  Yuezhan Feng,et al.  Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors , 2020, Rare Metals.

[18]  Kui Li,et al.  Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride , 2020 .

[19]  Dun Zhang,et al.  Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)2 hybrid nanotubes with broad-spectrum antibacterial activity. , 2020, ACS applied materials & interfaces.

[20]  X. Ren,et al.  Facile ion exchange to construct Ni-Fe-Co sulfides and hydroxides ultrathin nanosheets with rich interfaces for advanced all-solid-state asymmetric supercapacitors , 2020, Applied Surface Science.

[21]  Weifeng Wei,et al.  NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors , 2020, Rare Metals.

[22]  Haitao Xu,et al.  One-step Na2S2O3-activation strategy on the construction of CoS–Co(OH)2 nanoflakes@Cu31S16 microrod architectures for alkaline overall water splitting , 2020 .

[23]  H. Pang,et al.  Solid‐State Hybrid Supercapacitor Assembled from a Heterostructured Co−Ni Battery‐like Cathode and Supercapacitor‐Type Highly Disordered Carbon Nanosheets , 2020 .

[24]  Aitang Zhang,et al.  Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors , 2020 .

[25]  Liu Yang,et al.  Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors , 2019, Chemical Engineering Journal.

[26]  Huan Luo,et al.  Formation of high-performance Cu-WOx@C tribasic composite electrode for aqueous symmetric supercapacitor , 2019, Materials Today Energy.

[27]  Y. Lei,et al.  MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors , 2019, Chemical Engineering Journal.

[28]  Y. Ni,et al.  Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors , 2019, Chemical Engineering Journal.

[29]  Qingxiang Ma,et al.  Zeolitic imidazolate framework-derived Co3S4@Co(OH)2 nanoarrays as self-supported electrodes for asymmetric supercapacitors , 2019, Inorganic Chemistry Frontiers.

[30]  S. Jiang,et al.  Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors , 2019, Journal of Materials Chemistry A.

[31]  Hao Li,et al.  Nanocomposites of Cobalt Sulfide Embedded Carbon Nanotubes with Enhanced Supercapacitor Performance , 2019, Journal of The Electrochemical Society.

[32]  Yijun Zhong,et al.  Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors , 2019, Journal of Materials Chemistry A.

[33]  Haijun Wu,et al.  (Ni,Co)Se2 /NiCo-LDH Core/Shell Structural Electrode with the Cactus-Like (Ni,Co)Se2 Core for Asymmetric Supercapacitors. , 2018, Small.

[34]  Y. Lei,et al.  Self-templated transformation of MOFs into layered double hydroxide nanoarrays with selectively formed Co9S8 for high-performance asymmetric supercapacitors , 2018, Chemical Engineering Journal.

[35]  W. Fei,et al.  Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors , 2018, Chemical Engineering Journal.

[36]  X. Lou,et al.  Formation of Hierarchical Co9S8@ZnIn2S4 Heterostructured Cages as an Efficient Photocatalyst for Hydrogen Evolution. , 2018, Journal of the American Chemical Society.

[37]  Chongjun Zhao,et al.  Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for superior supercapacitor , 2018, Electrochimica Acta.

[38]  S. Ji,et al.  Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors , 2018, Chemical Engineering Journal.

[39]  Limin Wu,et al.  Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance , 2018, Scientific Reports.

[40]  Tianhao Xu,et al.  Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors , 2018 .

[41]  Xiaoping Song,et al.  Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors , 2018 .

[42]  Y. Lei,et al.  Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors , 2017 .

[43]  F. Gao,et al.  ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor , 2017 .

[44]  Jian Li,et al.  A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors , 2017 .

[45]  Ghim Wei Ho,et al.  In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance , 2017, Advanced materials.

[46]  Yan Zhao,et al.  Preparation of MnCo2O4@Ni(OH)2 Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance , 2016 .

[47]  Rui Li,et al.  NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors , 2016 .

[48]  S. E. Moosavifard,et al.  Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. , 2016, Chemical communications.

[49]  Jeeyoung Yoo,et al.  Bridging Oriented Copper Nanowire-Graphene Composites for Solution-Processable, Annealing-Free, and Air-Stable Flexible Electrodes. , 2016, ACS applied materials & interfaces.

[50]  G. Fang,et al.  Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application , 2015 .

[51]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[52]  Tianyi Kou,et al.  3D binder-free Cu2O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors , 2014 .

[53]  Zhiyuan Zeng,et al.  One-step synthesis of Ni3S2 nanorod@Ni(OH)2nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors , 2013 .

[54]  Qiming Liu,et al.  Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors , 2022 .