Wavelet Helmholtz decomposition for weak lensing mass map reconstruction

Laboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, SEDI-SAP, Service d’Astrophysique, CEA Saclay, F-91191GIF-Sur-YVETTE CEDEX, FranceJanuary 26, 2012Abstract To derive the convergence eld from the gravitational shear of the background galaxy images, theclassical methods require a convolution of the shear to be performed over the entire sky, usually expressed thanksto the Fast Fourier transform (FFT). However, it is not optimal for an imperfect geometry survey. Furthermore,FFT implicitly uses periodic conditions that introduce errors to the reconstruction. A method has been proposedthat relies on computation of an intermediate eld uthat combines the derivatives of and on convolution with aGreen kernel. In this paper, we study the wavelet Helmholtz decomposition as a new approach to reconstructingthe dark matter mass map. We show that a link exists between the Helmholtz decomposition and the E/B modeseparation. We introduce a new wavelet construction, that has a property that gives us more exibility in handlingthe border problem, and we propose a new method of reconstructing the dark matter mass map in the waveletspace. A set of experiments based on noise-free images illustrates that this Wavelet Helmholtz decompositionreconstructs the borders better than all other existing methods.

[1]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[2]  A. Heavens,et al.  Higher-order convergence statistics for three-dimensional weak gravitational lensing , 2010, 1002.2089.

[3]  Jean-Luc Starck,et al.  Light on dark matter with weak gravitational lensing , 2009, IEEE Signal Processing Magazine.

[4]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[5]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[6]  Daniele Carati,et al.  Energy transfers in forced MHD turbulence , 2006 .

[7]  K. Benabed,et al.  ASKI: full-sky lensing map-making algorithms , 2009, 0901.2001.

[8]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[9]  Valérie Perrier,et al.  Divergence-free Wavelets for Navier-Stokes , 2005, ArXiv.

[10]  Y. Mellier,et al.  Cosmic shear statistics and cosmology , 2001, astro-ph/0101511.

[11]  Dipak Munshi,et al.  Cosmology with weak lensing surveys. , 2005, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[12]  V. Perrier,et al.  Submitted to: 2007 Industrial Simulation Conference SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS , 2007 .

[13]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[14]  Matias Zaldarriaga,et al.  E/B decomposition of finite pixelized CMB maps , 2003 .

[15]  E- and B-mode mixing from incomplete knowledge of the shear correlation , 2006, astro-ph/0604520.

[16]  M. Kilbinger,et al.  A new cosmic shear function: optimized E-/B-mode decomposition on a finite interval , 2009, 0907.0795.

[17]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[18]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[19]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[20]  Y. Mellier Dark Matter from Weak Gravitational Lensing , 2002 .

[21]  A new finite-field mass reconstruction algorithm , 1998, astro-ph/9802051.

[22]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[23]  The ring statistics - how to separate E- and B-modes of cosmic shear correlation functions on a finite interval , 2006, astro-ph/0605084.

[24]  Matthias Bartelmann,et al.  Weak gravitational lensing , 2005 .

[25]  Jean-Luc Starck,et al.  Cosmological model discrimination with weak lensing , 2009 .

[26]  Pierre Gilles Lemarié-Rieusset Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .

[27]  Valérie Perrier,et al.  Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows , 2006 .

[28]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[29]  J.-L. Starck,et al.  FASTLens (FAst STatistics for weak Lensing) : Fast method for Weak Lensing Statistics and map making , 2009 .

[30]  Jean-Luc Starck,et al.  Weak lensing mass reconstruction using wavelets , 2005, astro-ph/0503373.

[31]  J. Fadili,et al.  FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making , 2008, 0804.4068.

[32]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[33]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .