Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

[1]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[2]  Hugh W. Coleman,et al.  Experimentation and Uncertainty Analysis for Engineers , 1989 .

[3]  Yoshiyasu Saito,et al.  Thermal studies of a lithium-ion battery , 1997 .

[4]  J. Selman,et al.  Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells , 1998 .

[5]  Yo Kobayashi,et al.  Electrochemical and calorimetric approach to spinel lithium manganese oxide , 1999 .

[6]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[7]  J. Selman,et al.  Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements , 2000 .

[8]  J. R. Selman,et al.  Entropy Changes Due to Structural Transformation in the Graphite Anode and Phase Change of the LiCoO2 Cathode , 2000 .

[9]  Akira Negishi,et al.  Comparative study of thermal behaviors of various lithium-ion cells , 2001 .

[10]  Karen E. Thomas,et al.  Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide , 2001 .

[11]  J. R. Selman,et al.  Thermal Characteristics of Li x Mn2 O 4 Spinel , 2001 .

[12]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[13]  Yo Kobayashi,et al.  Precise Electrochemical Calorimetry of LiCoO2/Graphite Lithium-Ion Cell Understanding Thermal Behavior and Estimation of Degradation Mechanism , 2002 .

[14]  Ralph E. White,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis , 2002 .

[15]  K. Onda,et al.  Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries , 2003 .

[16]  Jai Prakash,et al.  In Situ Measurements of Heat Generation in a Li/Mesocarbon Microbead Half-Cell , 2003 .

[17]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[18]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[19]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[20]  Hui Yang,et al.  Determination of the Reversible and Irreversible Heats of a LiNi0.8Co0.15Al0.05 O 2/Natural Graphite Cell Using Electrochemical-Calorimetric Technique , 2004 .

[21]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[22]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[23]  Yang-Kook Sun,et al.  In Situ Studies of Li x Mn2 O 4 and Li x Al0.17Mn1.83 O 3.97 S 0.03 Cathode by IMC , 2005 .

[24]  Wenquan Lu,et al.  Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery , 2006 .

[25]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[26]  Shabab Amiruddin,et al.  A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles , 2006 .

[27]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[28]  Yang-Kook Sun,et al.  Isothermal calorimetry investigation of Li1+xMn2−yAlzO4 spinel☆ , 2007 .

[29]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[30]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[31]  Jun Liu,et al.  Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management , 2010 .

[32]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .