Emerging applications of riboswitches in chemical biology.

Living systems use RNA sequences known as riboswitches to detect the concentrations of small-molecule metabolites within cells and to regulate the expression of genes that produce these metabolites. Like their natural counterparts, synthetic riboswitches also regulate gene expression in response to small molecules. Because synthetic riboswitches can be engineered to respond to nonendogenous small molecules, they are powerful tools for chemical and synthetic biologists interested in understanding and reprogramming cellular behavior. In this review, we present an overview of natural riboswitches, highlight recent studies toward developing synthetic riboswitches and provide an overview of emerging applications of these RNA switches in chemical biology.

[1]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[2]  J. Gallivan Toward reprogramming bacteria with small molecules and RNA. , 2007, Current opinion in chemical biology.

[3]  A. Danchin,et al.  Use of a Riboswitch-controlled Conditional Hypomorphic Mutation to Uncover a Role for the Essential csrA Gene in Bacterial Autoaggregation* , 2009, The Journal of Biological Chemistry.

[4]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[5]  Jerry Pelletier,et al.  Inhibition of translation by RNA-small molecule interactions. , 2002, RNA.

[6]  R. Breaker,et al.  Cooperative binding of effectors by an allosteric ribozyme. , 2001, Nucleic acids research.

[7]  C. Berens,et al.  A tetracycline-binding RNA aptamer. , 2001, Bioorganic & medicinal chemistry.

[8]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[9]  Ronald R. Breaker,et al.  Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression , 2009, RNA biology.

[10]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[11]  R. Breaker,et al.  Riboswitches as antibacterial drug targets , 2006, Nature Biotechnology.

[12]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[13]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[14]  Ronald R. Breaker,et al.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP , 1999, Nature Structural Biology.

[15]  R. Breaker,et al.  Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches , 2009, Gene Therapy.

[16]  R. Breaker,et al.  Antibacterial lysine analogs that target lysine riboswitches. , 2007, Nature chemical biology.

[17]  R. Breaker,et al.  Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.

[18]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[19]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[20]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[21]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[22]  T. Cech,et al.  Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA , 1984, Nature.

[23]  Markus Wieland,et al.  Artificial ribozyme switches containing natural riboswitch aptamer domains. , 2009, Angewandte Chemie.

[24]  R. A. Kreneva,et al.  Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region , 1992, Molecular and General Genetics MGG.

[25]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[26]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[27]  R Kole,et al.  Ribonuclease P: an enzyme with an essential RNA component. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[29]  V. Mizrahi,et al.  A Riboswitch Regulates Expression of the Coenzyme B12-Independent Methionine Synthase in Mycobacterium tuberculosis: Implications for Differential Methionine Synthase Function in Strains H37Rv and CDC1551 , 2007, Journal of bacteriology.

[30]  Michael Musheev,et al.  Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. , 2005, Journal of the American Chemical Society.

[31]  M. Hentze,et al.  Proteins binding to 5' untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells , 1994, Molecular and cellular biology.

[32]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Yanofsky,et al.  Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Soukup,et al.  Riboswitches exert genetic control through metabolite-induced conformational change. , 2004, Current opinion in structural biology.

[35]  R. Stoltenburg,et al.  SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. , 2007, Biomolecular engineering.

[36]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[37]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[38]  Shana Topp,et al.  Riboswitches in unexpected places--a synthetic riboswitch in a protein coding region. , 2008, RNA.

[39]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[40]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[41]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature reviews genetics.

[42]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[43]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[44]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[45]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[46]  M. Gelfand,et al.  A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. , 1999, Trends in genetics : TIG.

[47]  W. Schumann,et al.  Development of a glycine-inducible expression system for Bacillus subtilis. , 2007, Journal of biotechnology.

[48]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[49]  S. K. Desai,et al.  Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. , 2004, Journal of the American Chemical Society.

[50]  Dmitri A. Nusinow,et al.  Xist RNA and the mechanism of X chromosome inactivation. , 2002, Annual review of genetics.

[51]  Michael Famulok,et al.  Allosteric aptamers and aptazymes as probes for screening approaches. , 2005, Current opinion in molecular therapeutics.

[52]  T. Ohtsu,et al.  Effective isolation of RNA aptamer through suppression of PCR bias. , 2009, Biochemical and biophysical research communications.

[53]  M. Berezovski,et al.  Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). , 2005, Journal of the American Chemical Society.

[54]  Andrew D Ellington,et al.  Group I aptazymes as genetic regulatory switches , 2002, BMC biotechnology.

[55]  D. Spector,et al.  Long noncoding RNAs: functional surprises from the RNA world. , 2009, Genes & development.

[56]  Shana Topp,et al.  Random Walks to Synthetic Riboswitches—A High‐Throughput Selection Based on Cell Motility , 2008, Chembiochem : a European journal of chemical biology.

[57]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[58]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[59]  J. Gallivan,et al.  A flow cytometry-based screen for synthetic riboswitches , 2008, Nucleic acids research.

[60]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[61]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[62]  Y. Yokobayashi,et al.  Reengineering a natural riboswitch by dual genetic selection. , 2007, Journal of the American Chemical Society.

[63]  M. Hentze,et al.  A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Bowser,et al.  Microfluidic selection and applications of aptamers. , 2007, Journal of separation science.

[65]  Yohei Yokobayashi,et al.  Engineering complex riboswitch regulation by dual genetic selection. , 2008, Journal of the American Chemical Society.

[66]  Adam Roth,et al.  Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. , 2008, RNA.

[67]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[68]  M. Smit,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990 .

[69]  Bruce Tidor,et al.  Progress in computational protein design. , 2007, Current opinion in biotechnology.

[70]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[71]  T. Henkin,et al.  Mechanisms of resistance to an amino acid antibiotic that targets translation. , 2007, ACS chemical biology.

[72]  Frances H. Arnold,et al.  In the Light of Evolution III: Two Centuries of Darwin Sackler Colloquium: In the light of directed evolution: Pathways of adaptive protein evolution , 2009 .

[73]  Renee K Mosing,et al.  Isolating aptamers using capillary electrophoresis-SELEX (CE-SELEX). , 2009, Methods in molecular biology.

[74]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[75]  R R Breaker,et al.  Altering molecular recognition of RNA aptamers by allosteric selection. , 2000, Journal of molecular biology.

[76]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[77]  R. Breaker,et al.  Design and antimicrobial action of purine analogues that bind Guanine riboswitches. , 2009, ACS chemical biology.