Space–Time Adaptive Solution of First Order PDES

An explicit time-stepping method is developed for adaptive solution of time-dependent partial differential equations with first order derivatives. The space is partitioned into blocks and the grid is refined and coarsened in these blocks. The equations are integrated in time by a Runge–Kutta–Fehlberg (RKF) method. The local errors in space and time are estimated and the time and space steps are determined by these estimates. The method is shown to be stable if one-sided space discretizations are used. Examples such as the wave equation, Burgers’ equation, and the Euler equations in one space dimension with discontinuous solutions illustrate the method.

[1]  Shengtai Li,et al.  Stability of Moving Mesh Systems of Partial Differential Equations , 1998, SIAM J. Sci. Comput..

[2]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[3]  Andrew M. Stuart,et al.  On the Solution of Convection-Diffusion Boundary Value Problems Using Equidistributed Grids , 1998, SIAM J. Sci. Comput..

[4]  Per Lötstedt,et al.  Accurate and stable grid interfaces for finite volume methods , 2004 .

[5]  Tao Tang,et al.  Viscosity methods for piecewise smooth solutions to scalar conservation laws , 1997, Math. Comput..

[6]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[7]  A. Vande Wouwer,et al.  Some user-oriented comparisons of adaptive grid methods for partial differential equations in one space dimension , 1998 .

[8]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[9]  Kenneth G. Powell,et al.  A tree-based adaptive scheme for solution of the equations of gas dynamics and magnetohydrodynamics , 1994 .

[10]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[11]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[12]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[13]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[14]  Per Lötstedt,et al.  Efficiency in the adaptive solution of inviscid compressible flow problems , 2001 .

[15]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[16]  Per Lötstedt,et al.  Implicit Solution of Hyperbolic Equations with Space-Time Adaptivity , 2002 .

[17]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[18]  J. C. Whitson,et al.  Optics of ion beams of arbitrary perveance extracted from a plasma , 1978 .

[19]  A. Wouwer,et al.  Adaptive Method of Lines , 2001 .

[20]  J. P. Goedbloed,et al.  Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.

[21]  Florin Sabac,et al.  The Optimal Convergence Rate of Monotone Finite Difference Methods for Hyperbolic Conservation Laws , 1997 .

[22]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[23]  R. Li,et al.  Moving Mesh Method with Error-Estimator-Based Monitor and Its Applications to Static Obstacle Problem , 2004, J. Sci. Comput..

[24]  A. Ramage,et al.  On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution , 2001 .

[25]  Kjell Gustafsson,et al.  Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.

[26]  Björn Sjögreen,et al.  The Convergence Rate of Finite Difference Schemes in the Presence of Shocks , 1998 .

[27]  P. Colella,et al.  An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation , 1998 .

[28]  Per Lötstedt,et al.  Time step selection for shock problems , 2001 .

[29]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[30]  Richard D. Hornung,et al.  Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .

[31]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[32]  Per Lötstedt,et al.  Anisotropic grid adaptation for Navier--Stokes' equations , 2003 .

[33]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[34]  Feng Liu,et al.  An Adaptive Grid Method and Its Application to Steady Euler Flow Calculations , 1998, SIAM J. Sci. Comput..

[35]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[36]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[37]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[38]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[39]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[40]  Per Lötstedt,et al.  Adaptive Error Control for Steady State Solutions of Inviscid Flow , 2001, SIAM J. Sci. Comput..

[41]  Karl Hörnell Runge-Kutta Time Step Selection for Flow Problems , 2000 .

[42]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .