8‐Substituted, syn‐Configured Adenosine Derivatives as Potential Inhibitors of the Enzyme IspE from the Non‐Mevalonate Pathway of Isoprenoid Biosynthesis

The enzymes of the non-mevalonate pathway for isoprenoid biosynthesis are attractive targets for drugs against various diseases, including malaria. We describe herein the structure-based design, synthesis, conformational analysis, and biological evaluation of several 8-brominated or 8-aminated adenosine derivatives with different substituents at C(5′), targeting the ATP-adenine binding site of the IspE protein from the non-mevalonate pathway. An exhaustive conformational analysis of the adenosine derivatives both in solution and in the solid state confirmed the desired syn orientation of the adenine moiety. Despite this favorable pre-organization for binding to the cofactor pocket, biological evaluation of the inhibitors showed only a very modest inhibitory activity.

[1]  F. Diederich,et al.  Molecular recognition in chemical and biological systems. , 2015, Angewandte Chemie.

[2]  F. Diederich,et al.  5‐Substituted (1‐Thiolan‐2‐yl)cytosines as Inhibitors of A. aeolicus and E. coli IspE Kinases: Very Different Affinities to Similar Substrate‐Binding Sites , 2013 .

[3]  M. Chudziński,et al.  Halogen bonding in solution: thermodynamics and applications. , 2013, Chemical Society reviews.

[4]  F. Diederich,et al.  Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE: Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues , 2012 .

[5]  C. Hill,et al.  Isoprenoid biosynthesis in bacterial pathogens. , 2012, Microbiology.

[6]  F. Nosten,et al.  Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study , 2012, The Lancet.

[7]  P. Newton,et al.  A Major Genome Region Underlying Artemisinin Resistance in Malaria , 2012, Science.

[8]  F. Diederich,et al.  Identification of 1,3‐Diiminoisoindoline Carbohydrazides as Potential Antimalarial Candidates , 2012, ChemMedChem.

[9]  P. Bevilacqua,et al.  Prevalence of syn nucleobases in the active sites of functional RNAs. , 2011, RNA.

[10]  W. Eisenreich,et al.  Biochemistry of the non-mevalonate isoprenoid pathway , 2011, Cellular and Molecular Life Sciences.

[11]  Xuehui Chen,et al.  Crystal structure of 4‐diphosphocytidyl‐2‐C‐methyl‐D‐erythritol kinase (IspE) from Mycobacterium tuberculosis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[13]  G. McFadden,et al.  Malaria, Plasmodium falciparum and its apicoplast. , 2010, Biochemical Society transactions.

[14]  A. Vasella,et al.  Oligonucleotide Analogues with Integrated Bases and Backbones. Part 24 , 2010 .

[15]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[16]  L. Zhang,et al.  Synthesis and biological evaluation of novel neamine–nucleoside conjugates potentially targeting to RNAs , 2009 .

[17]  Richard J Maude,et al.  The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia , 2009, Malaria Journal.

[18]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[19]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[20]  C. Aldrich,et al.  Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5'-O-[N-(salicyl)sulfamoyl]adenosine. , 2008, Journal of medicinal chemistry.

[21]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[22]  Luzi J. Barandun,et al.  Inhibitors of the kinase IspE: structure-activity relationships and co-crystal structure analysis. , 2008, Organic & biomolecular chemistry.

[23]  Murray N. Robertson,et al.  Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery , 2008, The FEBS journal.

[24]  A. Vasella,et al.  Oligonucleotide Analogues with Integrated Bases and Backbone. Part 17 , 2008 .

[25]  F. Diederich,et al.  Synthesis and Characterization of Cytidine Derivatives that Inhibit the Kinase IspE of the Non‐Mevalonate Pathway for Isoprenoid Biosynthesis , 2008, ChemMedChem.

[26]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[27]  William N. Hunter,et al.  The Non-mevalonate Pathway of Isoprenoid Precursor Biosynthesis* , 2007, Journal of Biological Chemistry.

[28]  F. Diederich,et al.  Nonphosphate Inhibitors of IspE Protein, a Kinase in the Non‐Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy , 2007, ChemMedChem.

[29]  F. Diederich,et al.  Phosphate recognition in structural biology. , 2007, Angewandte Chemie.

[30]  A. Vasella,et al.  Oligonucleotide Analogues with Integrated Bases and Backbone. Part 13 , 2006 .

[31]  E. Lukevics,,et al.  Crystal Structure and Conformation of 8-(2-Hydroxyethylamino) and 8-(Pyrrolidin-1-yl) Adenosines , 2005, Nucleosides, nucleotides & nucleic acids.

[32]  Nick V Grishin,et al.  A comprehensive update of the sequence and structure classification of kinases , 2015 .

[33]  François Diederich,et al.  Orthogonal multipolar interactions in structural chemistry and biology. , 2005, Angewandte Chemie.

[34]  Donna Neuberg,et al.  Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. , 2005, Cancer cell.

[35]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Vasella,et al.  Oligonucleotide Analogues with a `Nucleobase-Including Backbone' Part 10. Design, Synthesis, and Association of Ether-Linked Dimers , 2004 .

[37]  S. Yokoyama,et al.  Crystal Structure of 4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase, an Enzyme in the Non-mevalonate Pathway of Isoprenoid Synthesis* , 2003, Journal of Biological Chemistry.

[38]  W. Eisenreich,et al.  Biosynthesis of isoprenoids: Crystal structure of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Nick V Grishin,et al.  Sequence and structure classification of kinases. , 2002, Journal of molecular biology.

[40]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[41]  S. Parsons,et al.  N‐Methyl­methanesulfon­amide at 150 K , 2002 .

[42]  W. Eisenreich,et al.  Deoxyxylulose phosphate pathway to terpenoids. , 2001, Trends in plant science.

[43]  N. Minakawa,et al.  Nucleosides and nucleotides. 200. Reinvestigation of 5'-N-ethylcarboxamidoadenosine derivatives: structure-activity relationships for P(3) purinoceptor-like proteins. , 2001, Journal of medicinal chemistry.

[44]  K. Mendis,et al.  The neglected burden of Plasmodium vivax malaria. , 2001, The American journal of tropical medicine and hygiene.

[45]  R. Bergeron,et al.  Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives. , 2000, Journal of medicinal chemistry.

[46]  A. Spek,et al.  5'-N-substituted carboxamidoadenosines as agonists for adenosine receptors. , 1999, Journal of medicinal chemistry.

[47]  N. Veldman,et al.  N6,C8-distributed adenosine derivatives as partial agonists for adenosine A1 receptors. , 1996, Journal of medicinal chemistry.

[48]  Paul R. Gerber,et al.  MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry , 1995, J. Comput. Aided Mol. Des..

[49]  M. L. Edwards,et al.  Use of the Mitsunobu reaction in the synthesis of polyamines , 1994 .

[50]  F. Seela,et al.  Syn-anti conformational analysis of regular and modified nucleosides by 1D 1H NOE difference spectroscopy: a simple graphical method based on conformationally rigid molecules , 1990 .

[51]  D. Shugar,et al.  A purine nucleoside unequivocally constrained in the syn form. Crystal structure and conformation of 8-(alpha-hydroxyisopropyl)-adenosine. , 1978, Biochimica et biophysica acta.

[52]  S. Fujii,et al.  Structural studies on the two forms of 8-bromo-2',3'-O-isopropylideneadenosine. , 1976, Nucleic acids research.

[53]  K. Wakabayashi,et al.  The crystal and molecular structure of 2‐ethylthio‐8‐methylinosine monohydrate , 1974 .

[54]  M. Ikehara,et al.  Conformational difference between 8-bromo-2'-O-triisopropyl-benzenesulfonyl-adenosine and its 3'-isomer determined by x-ray method. , 1972, Biochemical and biophysical research communications.

[55]  H. M. Sobell,et al.  Crystal and molecular structure of 8-bromoguanosine and 8-bromoadenosine, two purine nucleosides in the syn conformation. , 1970, Journal of molecular biology.

[56]  M. Ikehara,et al.  Studies of nucleosides and nucleotides. XXXV. Purine cyclonucleosides. 5. Synthesis of purine cyclonucleoside having 8,2'-O-anhydro linkage and its cleavage reactions. , 1968, Tetrahedron.

[57]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .