Science applications of the Mars Observer gamma ray spectrometer

The Mars Observer gamma ray spectrometer will return data related to the elemental composition of Mars. The instrument has both a gamma ray spectrometer and several neutron detectors. The gamma ray spectrometer will return a spectrum nominally every 20 s from Mars permitting a map of the elemental abundances to be made. The gamma rays are emitted from nuclei involved in radioactive decay, from nuclei formed by capture of a thermal neutron, and from nuclei put in an excited state by a fast-neutron interaction. The gamma rays come from an average depth of the order of a few tens of centimeters. The spectrum will show sharp emission lines whose intensity determines the concentration of the element and whose energy identifies the element. The neutron detectors, using the fact that the orbital velocity of the Mars Observer spacecraft is similar to the velocity of thermal neutrons, determine both the thermal and epithermal neutron flux. These parameters are particularly sensitive to the concentration of hydrogen in the upper meter of the surface. By combining the results from both techniques it is possible to map the depth dependence of hydrogen in the upper meter as well. These data permit a variety of Martian geoscience problems to be addressed including the crust and mantle composition, weathering processes, volcanism, and the volatile reservoirs and processes. In addition, the instrument is also sensitive to gamma ray and particle fluxes from non-Martian sources and will be able to address problems of astrophysical interest including gamma ray bursts, the extragalactic background, and solar processes.

[1]  Richard E. Lingenfelter,et al.  The lunar neutron flux revisited , 1972 .

[2]  W. Feldman,et al.  A Doppler filter technique to measure the hydrogen content of planetary surfaces , 1986 .

[3]  S. W. Petrick,et al.  Advanced radiative cooler with angled shields , 1981 .

[4]  R. Reedy,et al.  Neutron‐induced gamma ray spectroscopy: Simulations for chemical mapping of planetary surfaces , 1987 .

[5]  P. Spudis,et al.  Global petrologic variations on the Moon: A ternary‐diagram approach , 1986 .

[6]  D. Drake,et al.  Identification of lunar rock types and search for polar ice by gamma ray spectroscopy , 1990 .

[7]  R. D. O'dell,et al.  Gravitational effects on planetary neutron flux spectra , 1989 .

[8]  S. Squyres,et al.  Investigation of Martian H2O and Co2 via orbital gamma ray spectroscopy , 1987 .

[9]  Richard E. Lingenfelter,et al.  The lunar neutron flux , 1961 .

[10]  J. Yellin,et al.  High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target , 1986 .

[11]  E. Anderson,et al.  Gamma rays in space, ranger 3 , 1962 .

[12]  Hugh H. Kieffer,et al.  Mars south polar spring and summer temperatures: A residual CO2 frost , 1979 .

[13]  W. Mahoney,et al.  The HEAO 3 gamma-ray spectrometer , 1980 .

[14]  D. Filges,et al.  Monte Carlo simulation of martian gamma-ray spectra induced by galactic cosmic rays. , 1991 .

[15]  P. Spudis,et al.  A chemical and petrological model of the lunar crust , 1986 .

[16]  V. L. Barsukov,et al.  Determination of the elemental composition of martian rocks from Phobos 2 , 1989, Nature.

[17]  R. Reedy,et al.  Interaction of solar and galactic cosmic-ray particles with the Moon , 1972 .

[18]  B. R. Hawke,et al.  Thorium concentrations in the lunar surface. IV - Deconvolution of the Mare Imbrium, Aristarchus, and adjacent regions , 1983 .

[19]  J. Arnold,et al.  Gamma ray spectroscopic measurements of Mars. , 1970, Applied optics.

[20]  MARS OBSERVER MISSION , 1992 .

[21]  S. Bard Advanced passive radiator for spaceborne cryogenic cooling , 1984 .

[22]  B. Jakosky,et al.  Martian neutron leakage spectra , 1988 .

[23]  G. J. Bamford,et al.  Analysis of Phobos mission gamma ray spectra from Mars , 1992 .

[24]  J. Trombka,et al.  Instrumentation for gamma-ray astronomy , 1988 .

[25]  H. H. Kruse,et al.  Spectra processing with computer graphics , 1978 .

[26]  E. Anderson,et al.  Detection of an Interstellar Flux of Gamma-Rays , 1964, Nature.

[27]  R. L. Schuch,et al.  Lunar Composition by Scintillation Spectroscopy , 1962, IRE Transactions on Nuclear Science.

[28]  S. Seltzer,et al.  Reanalysis of the Apollo cosmic gamma-ray spectrum in the 0. 3 to 10 MeV energy region , 1977 .

[29]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  R. Pehl,et al.  High-Energy Proton Radiation Damage of High-Purity Germanium Detectors , 1978, IEEE Transactions on Nuclear Science.

[31]  R. Reedy Planetary gamma-ray spectroscopy , 1978 .

[32]  B. Jakosky,et al.  Detectability of Martian carbonates from orbit using thermal neutrons , 1991 .

[33]  R. Reedy,et al.  Surface chemistry of selected lunar regions , 1976 .

[34]  F. Fanale,et al.  Distribution and state of H2O in the high-latitude shallow subsurface of Mars , 1986 .

[35]  Robert C. Reedy,et al.  Expected γ ray emission spectra from the lunar surface as a function of chemical composition , 1973 .

[36]  A. Metzger,et al.  Thorium concentrations in the lunar surface. II - Deconvolution modeling and its application to the regions of Aristarchus and Mare Smythii , 1978 .