A geometrical method for the approximation of invariant tori

We consider a numerical method based on the so-called ''orthogonality condition'' for the approximation and continuation of invariant tori under flows. The basic method was originally introduced by Moore [Computation and parameterization of invariant curves and tori, SIAM J. Numer. Anal. 15 (1991) 245-263], but that work contained no stability or consistency results. We show that the method is unconditionally stable and consistent in the special case of a periodic orbit. However, we also show that the method is unstable for two-dimensional tori in three-dimensional space when the discretization includes even numbers of points in both angular coordinates, and we point out potential difficulties when approximating invariant tori possessing additional invariant sub-manifolds (e.g., periodic orbits). We propose some remedies to these difficulties and give numerical results to highlight that the end method performs well for invariant tori of practical interest.

[1]  Luca Dieci,et al.  Lyapunov-type numbers and torus breakdown: numerical aspects and a case study , 1997, Numerical Algorithms.

[2]  G. Moore,et al.  Geometric methods for computing invariant manifolds , 1995 .

[3]  Luca Dieci,et al.  Block M-Matrices and Computation of Invariant Tori , 1992, SIAM J. Sci. Comput..

[4]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[5]  Hans G. Othmer,et al.  An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators , 1987 .

[6]  Bernd Krauskopf,et al.  Investigating torus bifurcations in the forced Van der Pol oscillator , 2000 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Robert D. Russell,et al.  Computation of invariant tori by orthogonal collocation , 2000 .

[9]  G. Moore,et al.  Computation and parametrization of periodic and connecting orbits , 1995 .

[10]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[11]  R. Llave,et al.  The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .

[12]  Àngel Jorba,et al.  On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .

[13]  Andrew Y. T. Leung,et al.  Construction of Invariant Torus Using Toeplitz Jacobian Matrices/Fast Fourier Transform Approach , 1998 .

[14]  Luca Dieci,et al.  Computation of invariant tori by the method of characteristics , 1995 .

[15]  R. Llave,et al.  Whiskered and low dimensional tori in nearly integrable Hamiltonian systems. , 2004 .

[16]  Luca Dieci,et al.  Solution of the Systems Associated with Invariant Tori Approximation. II: Multigrid Methods , 1994, SIAM J. Sci. Comput..

[17]  Robert D. Russell,et al.  Numerical Calculation of Invariant Tori , 1991, SIAM J. Sci. Comput..

[18]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[19]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[20]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[21]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[22]  Laurette S. Tuckerman,et al.  Numerical methods for bifurcation problems , 2004 .

[23]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[24]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[25]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[26]  Manfred R. Trummer Spectral methods in computing invariant tori , 2000 .

[27]  Bryan Rasmussen Numerical Methods for the Continuation of Invariant Tori , 2003 .

[28]  M. van Veldhuizen A new algorithm for the numerical approximation of an invariant curve , 1987 .

[29]  Hinke M. Osinga,et al.  Computing invariant manifolds , 1996 .

[30]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[31]  G. Moore,et al.  Computation and Parametrisation of Invariant Curves and Tori , 1996 .

[32]  Volker Reichelt,et al.  Computing Invariant Tori and Circles in Dynamical Systems , 2000 .

[33]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[34]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.