A geometrical method for the approximation of invariant tori
暂无分享,去创建一个
[1] Luca Dieci,et al. Lyapunov-type numbers and torus breakdown: numerical aspects and a case study , 1997, Numerical Algorithms.
[2] G. Moore,et al. Geometric methods for computing invariant manifolds , 1995 .
[3] Luca Dieci,et al. Block M-Matrices and Computation of Invariant Tori , 1992, SIAM J. Sci. Comput..
[4] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[5] Hans G. Othmer,et al. An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators , 1987 .
[6] Bernd Krauskopf,et al. Investigating torus bifurcations in the forced Van der Pol oscillator , 2000 .
[7] Gene H. Golub,et al. Matrix computations , 1983 .
[8] Robert D. Russell,et al. Computation of invariant tori by orthogonal collocation , 2000 .
[9] G. Moore,et al. Computation and parametrization of periodic and connecting orbits , 1995 .
[10] R. Canosa,et al. The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .
[11] R. Llave,et al. The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .
[12] Àngel Jorba,et al. On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .
[13] Andrew Y. T. Leung,et al. Construction of Invariant Torus Using Toeplitz Jacobian Matrices/Fast Fourier Transform Approach , 1998 .
[14] Luca Dieci,et al. Computation of invariant tori by the method of characteristics , 1995 .
[15] R. Llave,et al. Whiskered and low dimensional tori in nearly integrable Hamiltonian systems. , 2004 .
[16] Luca Dieci,et al. Solution of the Systems Associated with Invariant Tori Approximation. II: Multigrid Methods , 1994, SIAM J. Sci. Comput..
[17] Robert D. Russell,et al. Numerical Calculation of Invariant Tori , 1991, SIAM J. Sci. Comput..
[18] R. Llave,et al. The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .
[19] R. Canosa,et al. The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .
[20] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[21] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[22] Laurette S. Tuckerman,et al. Numerical methods for bifurcation problems , 2004 .
[23] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[24] S. A. Robertson,et al. NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .
[25] W. Rheinboldt. On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .
[26] Manfred R. Trummer. Spectral methods in computing invariant tori , 2000 .
[27] Bryan Rasmussen. Numerical Methods for the Continuation of Invariant Tori , 2003 .
[28] M. van Veldhuizen. A new algorithm for the numerical approximation of an invariant curve , 1987 .
[29] Hinke M. Osinga,et al. Computing invariant manifolds , 1996 .
[30] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[31] G. Moore,et al. Computation and Parametrisation of Invariant Curves and Tori , 1996 .
[32] Volker Reichelt,et al. Computing Invariant Tori and Circles in Dynamical Systems , 2000 .
[33] D. Jordan,et al. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .
[34] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.