of Mechanics of Materials and Structures FORCED VIBRATIONS OF A NONLINEAR OSCILLATOR WITH WEAK FRACTIONAL DAMPING

[1]  Yuriy A. Rossikhin,et al.  Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders , 2004 .

[2]  A. M. Abdel-Ghaffar,et al.  Ambient Vibration Studies of Golden Gate Bridge: I. Suspended Structure , 1985 .

[3]  Teodor M. Atanackovic,et al.  On a numerical scheme for solving differential equations of fractional order , 2008 .

[4]  James M. Kelly,et al.  Application of fractional derivatives to seismic analysis of base‐isolated models , 1990 .

[5]  Yuriy A. Rossikhin,et al.  New Approach for the Analysis of Damped Vibrations of Fractional Oscillators , 2009 .

[6]  Javeed A. Munshi Effect of viscoelastic dampers on hysteretic response of reinforced concrete elements , 1997 .

[7]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[8]  Rong Deng,et al.  Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications , 2003 .

[9]  I. Schäfer Beschreibung der Dämpfung in Stäben mittels fraktionaler Zeitableitungen , 2000 .

[10]  Yuriy A. Rossikhin,et al.  Application of Fractional Calculus for Analysis of Nonlinear Damped Vibrations of Suspension Bridges , 1998 .

[11]  Application of Galerkin Method to Dynamical Behavior of Viscoelastic Timoshenko Beam with Finite Deformation , 2003 .

[12]  Leif Kari,et al.  Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model , 2003 .

[13]  Hsien-Keng Chen,et al.  Chaotic dynamics of the fractionally damped Duffing equation , 2007 .

[14]  Marina V. Shitikova,et al.  Analysis of Dynamic Behaviour of Viscoelastic Rods Whose Rheological Models Contain Fractional Derivatives of Two Different Orders , 2001 .

[15]  M. Shitikova,et al.  Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances , 2006 .

[16]  I. Schäfer,et al.  Description of the Impulse Response in Rods by Fractional Derivatives , 2002 .

[17]  Ji-Huan He Approximate analytical solution for seepage flow with fractional derivatives in porous media , 1998 .

[18]  Time-domain Analysis Of Structures With Dampers Modelled By Fractional Derivatives , 2001 .

[19]  Jerzy T. Sawicki,et al.  Nonlinear Vibrations of Fractionally Damped Systems , 1998 .

[20]  Anindya Chatterjee,et al.  Galerkin Projections and Finite Elements for Fractional Order Derivatives , 2006 .

[21]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[22]  A. Hanyga,et al.  Nonlinear differential equations with fractional damping with applications to the 1dof and 2dof pendulum , 2005 .

[23]  Yuriy A. Rossikhin,et al.  Nonlinear free damped vibrations of suspension bridges with uncertain fractional damping , 2008 .

[24]  Stegun (editors , 1970 .

[25]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[26]  Lothar Gaul,et al.  On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems , 2006, Signal Process..

[27]  Juebang Yu,et al.  Chaos in the fractional order periodically forced complex Duffing’s oscillators , 2005 .

[28]  Ingo Schäfer,et al.  Impulse Responses of Fractional Damped Systems , 2004 .

[29]  Vimal Singh,et al.  Perturbation methods , 1991 .

[30]  Ting-Yu Hsu,et al.  A fractional derivative model to include effect of ambient temperature on HDR bearings , 2001 .

[31]  A. Hanyga,et al.  Nonlinear Hamiltonian equations with fractional damping , 2000 .

[32]  E. Jahnke,et al.  Tafeln höherer Funktionen = Tables of higher functions , 1960 .

[33]  Pankaj Wahi,et al.  Averaging Oscillations with Small Fractional Damping and Delayed Terms , 2004 .

[34]  Om P. Agrawal,et al.  Analytical Solution for Stochastic Response of a Fractionally Damped Beam , 2004 .

[35]  Weiqiu Zhu,et al.  Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations , 2009 .

[36]  J. S. Hwang,et al.  Analytical Modeling of High Damping Rubber Bearings , 1997 .

[37]  M. Shitikova,et al.  Free Damped Nonlinear Vibrations of a Viscoelastic Plate under Two-to-One Internal Resonance , 2003 .

[38]  Michael C. Constantinou,et al.  Fractional‐Derivative Maxwell Model for Viscous Dampers , 1991 .

[39]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[40]  James M. Kelly,et al.  EVOLUTIONARY MODEL OF VISCOELASTIC DAMPERS FOR STRUCTURAL ApPLICATIONS , 1997 .

[41]  Marina V. Shitikova,et al.  Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional derivative , 2000 .

[42]  M. Giovagnoni,et al.  A fractional derivative model for single-link mechanism vibration , 1992 .