Lyapunov Based Reference Model of Tension Control in a Continuous Strip Processing Line with Multi-Motor Drive

The article describes design and experimental verification of a new control structure with reference model for a multi-motor drive of a continuous technological line in which the motors are mutually mechanically coupled through processed material. Its principle consists in creating an additional information by introducing a new suitable state variable into the system. This helps to achieve a zero steady-state control deviation of the tension in the strip. Afterwards, the tension controller is designed to ensure asymptotic stability of the extended system by applying the second Lyapunov method. The realized experimental measurements performed on a continuous line laboratory model confirm the advantages and correctness of the proposed control structure: it is simple, stable, robust against changes of parameters, invariant to operating disturbances and ensures a high-quality dynamics of the controlled system prescribed by the reference model. To demonstrate effectiveness of the design, the performance of the controller was compared with properties of a standard Proportional Integral Derivative/Proportional Integral (PID/PI) controller designed in frequency domain.

[1]  Shuzhi Sam Ge,et al.  Top Tension Control of a Flexible Marine Riser by Using Integral-Barrier Lyapunov Function , 2015, IEEE/ASME Transactions on Mechatronics.

[2]  Wei Zhao,et al.  Adaptive robust control for four-motor driving servo system with uncertain nonlinearities , 2017 .

[3]  Jian Li,et al.  Coupling Model and Controller Design for Four-layer Register System , 2016 .

[4]  Pavol Fedor,et al.  Modern methods of complex drives control , 2004 .

[5]  Pavol Fedor,et al.  Multi-motor drive optimal control using a fuzzy model based approach , 2017, J. Ambient Intell. Smart Environ..

[6]  Hidenori Kimura,et al.  Observer-based multivariable tension control of aluminum hot rolling mills , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  F. Bekes,et al.  Motion control of a tendon-based parallel manipulator using optimal tension distribution , 2004, IEEE/ASME Transactions on Mechatronics.

[8]  K. Narendra,et al.  A comparison of Lyapunov and hyperstability approaches to adaptive control of continuous systems , 1980 .

[9]  Ali Saghafinia,et al.  Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller , 2013, Sensors.

[10]  Prabhakar R. Pagilla,et al.  Robust observer-based control of an aluminum strip processing line , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[11]  V. Lakshmikantham,et al.  Advances in stability theory of Lyapunov: old and new , 2000 .

[12]  G. BRANDENBURG,et al.  Ein mathematisches Modell für eine durchlaufende elastische Stoffbahn in einem System angetriebener, umschlungener Walzen, Teil 3 , 1973 .

[13]  A. M. Li︠a︡punov Stability of Motion , 2016 .

[14]  Han Me Kim,et al.  A Web Tension Control Strategy for Multi-span Web Transport Systems in Annealing Furnace , 2010 .

[15]  G. BRANDENBURG Ein mathematisches Modell für eine durchlaufende elastische Stoffbahn in einem System angetriebener, umschlungener Walzen, Teil 2 , 1973 .

[16]  Takeshi Nishida,et al.  Decentralized H∞ based control of a web transport system , 2011 .

[17]  Seung-Ki Sul,et al.  A new tension controller for continuous strip processing line , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[18]  A. Bouscayrol,et al.  Tension control loop using a linear actuator based on the energetic macroscopic representation , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[19]  R. N. Norris Sectional electric drive for paper machines , 1926, Journal of the A.I.E.E..

[20]  Stjepan Bogdan,et al.  Lyapunov based model reference adaptive control for aerial manipulation , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[21]  D. Schroder,et al.  Time-optimal tension control for processing plants with continuous moving webs , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[22]  Seshadhri Srinivasan,et al.  Design of PSO-Based PI Controller for Tension Control in Web Transport Systems , 2016 .

[23]  Dominique Knittel,et al.  Robust decentralised control strategies for large-scale web handling systems , 2004 .

[24]  Mohsen Ekramian,et al.  Robust Tension Control of Strip for 5-Stand Tandem Cold Mills , 2014 .

[25]  Hachemi Glaoui,et al.  Decentralized PI controller for multimotors web winding system , 2012 .

[26]  Ku Chin Lin,et al.  Observer-based tension feedback control with friction and inertia compensation , 2003, IEEE Trans. Control. Syst. Technol..

[27]  Wang Xiaoming,et al.  Model reference adaptive control based on Lyapunov stability theory , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[28]  Hans Butler,et al.  Model reference adaptive control: from theory to practice , 1992 .

[29]  Hamid Reza Koofigar,et al.  Unified gauge-tension control in cold rolling mills: A robust regulation technique , 2011 .

[30]  W. Wolfermann,et al.  Tension control of webs - A review of the problems and solutions in the present and future , 1995 .

[31]  Chwan-Lu Tseng,et al.  An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems , 2015, Sensors.

[32]  Boumediène Allaoua,et al.  Multi-Drive Paper System Control Based on Multi-Input Multi-Output PID Controller , 2010 .

[33]  T. Bastogne,et al.  Tension optimal control of a multivariable winding process , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[34]  G. BRANDENBURG Ein mathematisches Modell für eine durchlaufende elastische Stoffbahn in einem System angetriebener, umschlungener Walzen, Teil 1 , 1973 .

[35]  Alessandro Astolfi,et al.  Dynamic Lyapunov functions , 2013, Autom..

[36]  B. Jeftenic,et al.  Controlled multi-motor drives , 2006, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006..

[37]  Jianchang Liu,et al.  Research on decoupling method of thickness and tension control in rolling process , 2014, Proceeding of the 11th World Congress on Intelligent Control and Automation.

[38]  Fang He,et al.  Compensation and fuzzy control of tension in strip winding control system , 2012, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[39]  M.A. Valenzuela,et al.  Evaluation of torsional oscillations in paper machine sections , 2004, IEEE Transactions on Industry Applications.

[40]  M. S. Lan EFFECTS OF PID GAINS FOR CONTROLLER WITH DANCER MECHANISM ON WEB TENSION , 2019 .

[41]  Thomas Parisini,et al.  Adaptive task-space metal strip-flatness control in cold multi-roll mill stands , 2013 .

[42]  D. Knittel,et al.  Tension control for winding systems with two degrees of freedom H/sub /spl infin// controller , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[43]  Lucy Y. Pao,et al.  Robust Lyapunov-based feedback control of nonlinear Web-winding systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[44]  Xiaofeng Zhang,et al.  Robust control of strip tension for tandem cold rolling mill , 2011, Proceedings of the 30th Chinese Control Conference.

[45]  K. Okada,et al.  An adaptive fuzzy control for web tension control system , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).