Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

Author(s): Cushman, P; Galbiati, C; McKinsey, DN; Robertson, H; Tait, TMP; Bauer, D; Borgland, A; Cabrera, B; Calaprice, F; Cooley, J; Empl, T; Essig, R; Figueroa-Feliciano, E; Gaitskell, R; Golwala, S; Hall, J; Hill, R; Hime, A; Hoppe, E; Hsu, L; Hungerford, E; Jacobsen, R; Kelsey, M; Lang, RF; Lippincott, WH; Loer, B; Luitz, S; Mandic, V; Mardon, J; Maricic, J; Maruyama, R; Mahapatra, R; Nelson, H; Orrell, J; Palladino, K; Pantic, E; Partridge, R; Ryd, A; Saab, T; Sadoulet, B; Schnee, R; Shepherd, W; Sonnenschein, A; Sorensen, P; Szydagis, M; Volansky, T; Witherell, M; Wright, D; Zurek, K | Abstract: As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.

[1]  G. J. Alner,et al.  University of Huddersfield Repository First on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection , 2022 .

[2]  D. J. Reid,et al.  The C-4 dark matter experiment , 2012, 1210.6282.

[3]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[4]  D O Caldwell,et al.  Results from a low-energy analysis of the CDMS II germanium data. , 2010, Physical review letters.

[5]  Enectali Figueroa-Feliciano,et al.  Dark Matter Search Results Using the Silicon Detectors of CDMS II , 2013 .

[6]  P. O. Hulth,et al.  Search for dark matter annihilations in the sun with the 79-string IceCube detector. , 2012, Physical review letters.

[7]  E Aprile,et al.  Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. , 2013, Physical review letters.

[8]  W. Fedus,et al.  First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector , 2010, 1006.2928.

[9]  M. Szydagis,et al.  First dark matter search results from a 4-kg CF$_3$I bubble chamber operated in a deep underground site , 2012, 1204.3094.

[10]  Pavel Strachota,et al.  Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at √s=7 TeV with the ATLAS detector , 2013 .

[11]  D. Hauff,et al.  Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.

[12]  W. Skulski,et al.  The Large Underground Xenon (LUX) experiment , 2012, 1211.3788.

[13]  C. Winant,et al.  Search for light dark matter in XENON10 data. , 2011, Physical review letters.

[14]  J. Wilkerson,et al.  Astroparticle physics with a customized low-background Broad Energy Germanium detector , 2010, IEEE Nuclear Science Symposuim & Medical Imaging Conference.

[15]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[16]  Chao-Hsiung Tseng,et al.  Introduction to the CDEX experiment , 2013, 1303.0601.

[17]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[18]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[19]  G. Kalmus,et al.  WIMP-nucleon cross-section results from the second science run of ZEPLIN-III , 2011, 1110.4769.

[20]  E Aprile,et al.  Dark matter results from 100 live days of XENON100 data. , 2011, Physical review letters.

[21]  E. Daw,et al.  The DRIFT Dark Matter Experiments , 2011, 1110.0222.

[22]  K. Arisaka,et al.  Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors , 2011, 1107.1295.

[23]  T. Hauth,et al.  Search for dark matter and large extra dimensions in monojet events in pp collisions at $ \sqrt {s} = {7} $ TeV , 2012 .

[24]  F. Calaprice,et al.  A study of the trace 39Ar content in argon from deep underground sources , 2012, 1204.6011.

[25]  J.Kisiel,et al.  The ArDM experiment , 2010, 1006.5335.

[26]  Betty A. Young,et al.  Limits on spin-dependent WIMP-nucleon interactions from the cryogenic dark matter search , 2006 .

[27]  N. Fourches,et al.  Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors , 2012, 1207.1815.

[28]  A. Green Determining the weakly interacting massive particles mass using direct detection experiments , 2007, hep-ph/0703217.

[29]  K. Arisaka,et al.  Light Yield in DarkSide-10: A Prototype Two-Phase Argon TPC for Dark Matter Searches , 2012, 1204.6218.

[30]  A. Hime The MiniCLEAN Dark Matter Experiment , 2011, 1110.1005.

[31]  N. Yahlali,et al.  Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC , 2012, 1211.4474.

[32]  Patrick J. Fox,et al.  The Tevatron at the frontier of dark matter direct detection , 2010, 1005.3797.

[33]  A. Drlica-Wagner,et al.  Complementarity and Searches for Dark Matter in the pMSSM , 2013, 1305.6921.

[34]  B. Paul,et al.  Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes , 2011, 1103.4070.

[35]  L. Cadonati,et al.  Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth , 2013, 1304.7381.

[36]  R. Essig,et al.  Direct Detection of Sub-GeV Dark Matter , 2011, 1108.5383.

[37]  K. Freese,et al.  Annual Modulation of Dark Matter: A Review , 2012, 1209.3339.

[38]  F. Dejongh,et al.  Observation of the dependence on drift field of scintillation from nuclear recoils in liquid argon , 2013 .

[39]  B. Kilminster,et al.  Direct search for low mass dark matter particles with CCDs , 2011, 1105.5191.

[40]  A. K. Soma,et al.  Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector. , 2013, Physical review letters.

[41]  J. S. Lee,et al.  Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors , 2018, Physical review letters.

[42]  Goodman,et al.  Detectability of certain dark-matter candidates. , 1985, Physical review. D, Particles and fields.

[43]  M. Garcia-Sciveres,et al.  The Directional Dark Matter Detector (D 3 ) , 2011, 1110.3401.

[44]  D. Cowen,et al.  A Search for the Dark Matter Annual Modulation in South Pole Ice , 2011, 1106.1156.

[45]  P. Belli,et al.  New results from DAMA/LIBRA , 2010, 1002.1028.

[46]  M. K. Lee,et al.  Light WIMP search in XMASS , 2012, 1211.5404.

[47]  T. Nakano,et al.  Fine grained nuclear emulsion for higher resolution tracking detector , 2013 .

[48]  D. Mckinsey,et al.  Scintillation response of liquid xenon to low energy nuclear recoils , 2005, astro-ph/0503621.

[49]  P. Sorensen,et al.  First direct detection limits on sub-GeV dark matter from XENON10. , 2012, Physical review letters.

[50]  Jonathan L. Feng,et al.  Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond , 2013, 1310.8621.

[51]  H. S. Miley,et al.  CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors , 2012, 1208.5737.

[52]  A. Bodek,et al.  Erratum: Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering [Phys. Rev. Lett.88, 091802 (2002)] , 2003 .

[53]  Wei Guo,et al.  Concept for a dark matter detector using liquid helium-4 , 2013, 1302.0534.

[54]  G. Church,et al.  New Dark Matter Detectors using DNA for Nanometer Tracking , 2012, 1206.6809.

[55]  A. Anderson,et al.  Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering , 2012, 1201.3805.

[56]  R. Hazama,et al.  WIMPs search by means of the highly segmented scintillator , 2005 .