Mechanism and function of synaptotagmin-mediated membrane apposition

[1]  Edwin R. Chapman,et al.  Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion , 2009, Cell.

[2]  T. Ha,et al.  1 Supporting Information , 2002 .

[3]  H. McMahon,et al.  Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. , 2008, Molecular biology of the cell.

[4]  E. Chapman,et al.  Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro , 2008, Journal of Biological Chemistry.

[5]  J. Rizo,et al.  The Janus-Faced Nature of the C2B Domain Is Fundamental for Synaptotagmin-1 Function , 2008, Nature Structural &Molecular Biology.

[6]  E. Chapman,et al.  Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+ , 2008, Nature Structural &Molecular Biology.

[7]  D. Cojoc,et al.  Cross-linking of Phospholipid Membranes is a Conserved Property of Calcium-sensitive Synaptotagmins , 2008, Journal of molecular biology.

[8]  Edwin R Chapman,et al.  How does synaptotagmin trigger neurotransmitter release? , 2008, Annual review of biochemistry.

[9]  V. Shahin,et al.  Synaptotagmin perturbs the structure of phospholipid bilayers. , 2008, Biochemistry.

[10]  Roummel F. Marcia,et al.  Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. , 2007, Molecular biology of the cell.

[11]  R. Jahn,et al.  Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids , 2007, Nature Structural &Molecular Biology.

[12]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[13]  E. Chapman,et al.  Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. , 2006, Biophysical journal.

[14]  T. A. Ryan,et al.  Synaptic Vesicles Interchange Their Membrane Proteins with a Large Surface Reservoir during Recycling , 2006, Neuron.

[15]  Edwin R Chapman,et al.  Ca2+–synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion , 2006, Nature Structural &Molecular Biology.

[16]  T. Südhof,et al.  Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids , 2006, Nature Structural &Molecular Biology.

[17]  E. Chapman,et al.  Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. , 2005, Molecular biology of the cell.

[18]  D. Cafiso,et al.  Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. , 2005, Biochemistry.

[19]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[20]  M. Jackson,et al.  Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions , 2004, Neuron.

[21]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.

[22]  M. Popoli,et al.  A hemagglutinin specific for sialic acids in a rat brain synaptic vesicle-enriched fraction , 2004, Neurochemical Research.

[23]  M. Jackson,et al.  Mutations in the Effector Binding Loops in the C2A and C2B Domains of Synaptotagmin I Disrupt Exocytosis in a Nonadditive Manner* , 2003, Journal of Biological Chemistry.

[24]  H. Bellen,et al.  Synaptotagmin I, a Ca2+ sensor for neurotransmitter release , 2003, Trends in Neurosciences.

[25]  E. Chapman,et al.  Visualization of synaptotagmin I oligomers assembled onto lipid monolayers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[27]  Ping Wang,et al.  C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[29]  Ping Wang,et al.  The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis , 2001, The Journal of cell biology.

[30]  T. Südhof,et al.  The C2B domain of synaptotagmin I is a Ca2+-binding module. , 2001, Biochemistry.

[31]  B. Seaton,et al.  Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. , 2001, Biochemistry.

[32]  C. Forde,et al.  Calcium triggers an intramolecular association of the C2 domains in synaptotagmin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Sejal M. Patel,et al.  SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion , 1999, Cell.

[34]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[35]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[36]  C. Leslie Properties and Regulation of Cytosolic Phospholipase A2 * , 1997, The Journal of Biological Chemistry.

[37]  J. Rothman,et al.  Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Creutz,et al.  Calcium‐Dependent Self‐Association of Synaptotagmin I , 1996, Journal of neurochemistry.

[39]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[40]  C. Creutz,et al.  Synergistic membrane interactions of the two C2 domains of synaptotagmin. , 1994, The Journal of biological chemistry.

[41]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[42]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[43]  G. Campanella,et al.  Identification and partial purification of a GM1-binding protein from presynaptic vesicles. , 1991, Acta neurologica.

[44]  A. Schroit,et al.  Determination of lipid asymmetry in human red cells by resonance energy transfer. , 1987, Biochemistry.

[45]  S. Rosenfeld,et al.  Kinetic studies of calcium and magnesium binding to troponin C. , 1985, The Journal of biological chemistry.

[46]  N. Düzgüneş,et al.  Phospholipid vesicle aggregation: effect of monovalent and divalent ions. , 1982, Biochemistry.

[47]  N. Green,et al.  AVIDIN. 1. THE USE OF (14-C)BIOTIN FOR KINETIC STUDIES AND FOR ASSAY. , 1963, The Biochemical journal.

[48]  J. Rizo,et al.  Accelerated Publications The C 2 B Domain of Synaptotagmin I Is a Ca 2 +-Binding Module † , 2022 .