Generalized transforms

A recent class of continuous transforms is generalized to give an infinite number of new transforms. A frequency interpretation of the transform base functions gives fast generalized transform (FGT) matrices using standard digit reversal techniques. Examples of FGT factorizations are given. Advantages of the generalized transforms include continuous transform properties for system design and analysis and FGT algorithms for practical applications using digital hardware.

[1]  Herbert J. Reitboeck,et al.  A Transformation with Invariance Under Cyclic Permutation for Applications in Pattern Recognition , 1969, Inf. Control..

[2]  Robert M. Haralick,et al.  Comparative Study of a Discrete Linear Basis for Image Data Compression , 1974, IEEE Trans. Syst. Man Cybern..

[3]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[4]  D. Elliott A class of generalized continuous orthogonal transforms , 1974 .

[5]  Nelson M. Blachman Some Comments Concerning Walsh Functions , 1972, IEEE Trans. Inf. Theory.

[6]  Spectral Analysis with Sinusoids and Walsh Functions , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[7]  C. Burrus,et al.  Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .

[8]  Wen-Hsiung Chen,et al.  Slant Transform Image Coding , 1974, IEEE Trans. Commun..

[9]  K. R. Rao,et al.  BIFORE or Hadamard transform , 1971 .

[10]  N. M. Blachman Sinusoids versus Walsh functions , 1974 .

[11]  Ralph Selfridge Generalized Walsh transforms. , 1955 .

[12]  R. Singleton An algorithm for computing the mixed radix fast Fourier transform , 1969 .

[13]  Douglas Elliott,et al.  Low-Level Signal Detection Using a New Transform Class , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[14]  S. Campanella,et al.  A Comparison of Orthogonal Transformations for Digital Speech Processing , 1971 .

[15]  Walsh transform of sampled time functions and the sampling principle , 1973 .

[16]  N. J. Fine,et al.  The generalized Walsh functions , 1950 .

[17]  Nasir Ahmed,et al.  A generalized discrete transform , 1971 .

[18]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[19]  K. R. Rao,et al.  Image Data Processing by Hadamard-Haar Transform , 1975, IEEE Transactions on Computers.