The Laplace Transform Multiquadric Method: A Highly Accurate Scheme for the Numerical Solution of Partial Differential Equations

We combine the numerical inversion of Laplace Transforms to integrate partial differential equations (PDEs) in time, with an exponentially-convergent grid-free spatial approximation scheme called multiquadrics (MQ) for the spatial terms. The new method yields remarkably accurate numerical solutions, and the computational effort holds the promise of being orders of magnitude more efficient than traditional finite difference (FD) or finite element (FE) methods.

[1]  R. Banks,et al.  A solution of the differential equation of longitudinal dispersion in porous media , 1961 .

[2]  Harald Stehfest,et al.  Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970, CACM.

[3]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[4]  Kenny S. Crump,et al.  Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.

[5]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[6]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[7]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[8]  E. Kansa Shock computations with adaptive mesh refinement and moving grids , 1988 .

[9]  E. A. Sudicky,et al.  The Laplace Transform Galerkin Technique: A time‐continuous finite element theory and application to mass transport in groundwater , 1989 .

[10]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[11]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[12]  M. Buhmann Multivariate cardinal interpolation with radial-basis functions , 1990 .

[13]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[14]  M. Buhmann Multivariate interpolation in odd-dimensional euclidean spaces using multiquadrics , 1990 .

[15]  G. Moridis,et al.  The Laplace Transform Finite Difference Method for Simulation of Flow Through Porous Media , 1991 .

[16]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[17]  T. A. Foley The map and blend scattered data interpolant on a sphere , 1992 .

[18]  G. Moridis Alternative Formulations of The Laplace Transform Boundary Element (LTBE) Numerical Method for the Solution of Diffusion-Type Equations , 1992 .

[19]  Dubal Construction of three-dimensional black-hole initial data via multiquadrics. , 1992, Physical review. D, Particles and fields.

[20]  Quan Zheng,et al.  Solution and control of PDE via global optimization methods , 1993 .

[21]  A. Makroglou Radial basis functions in the numerical solution of nonlinear Volterra integral equations , 1994 .