Dynamic Simulation of Natural Gas Transmission Pipeline Systems through Autoregressive Neural Networks

[1]  Esmaeel Khanmirza,et al.  Transient simulation of gas pipeline networks using intelligent methods , 2016 .

[2]  K. Aparna,et al.  Neuro-fuzzy Soft Sensor Estimator for Benzene Toluene Distillation Column , 2016 .

[3]  Tareq Al-Ansari,et al.  Air catalytic biomass (PKS) gasification in a fixed-bed downdraft gasifier using waste bottom ash as catalyst with NARX neural network modelling , 2020, Comput. Chem. Eng..

[4]  Morteza Behbahani-Nejad,et al.  The accuracy and efficiency of a MATLAB-Simulink library for transient flow simulation of gas pipelines and networks , 2010 .

[5]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[6]  Shankar Narasimhan,et al.  Simulation and State Estimation of Transient Flow in Gas Pipeline Networks Using a Transfer Function Model , 2006 .

[8]  H. C. Ti,et al.  Transient analysis of isothermal gas flow in pipeline network , 2000 .

[9]  Andrea Lanzini,et al.  Power-to-X and power-to-power routes , 2019, Solar Hydrogen Production.

[10]  Rezvan Alamian,et al.  A state space model for transient flow simulation in natural gas pipelines , 2012 .

[11]  Ying Chen,et al.  Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model , 2020, Applied Energy.

[12]  Kishan G. Mehrotra,et al.  Forecasting the behavior of multivariate time series using neural networks , 1992, Neural Networks.

[13]  A. J. Osiadacz,et al.  Analysis of loop methods for simulating gas networks , 1987 .

[14]  Michael A. Adewumi,et al.  Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme , 2000 .

[15]  C. Mansilla,et al.  Review and analysis of demonstration projects on power-to-X pathways in the world , 2019, International Journal of Hydrogen Energy.

[16]  William Y. Svrcek,et al.  Automatic design of neural network structures , 2001 .

[17]  Bo Yu,et al.  Fast method for the hydraulic simulation of natural gas pipeline networks based on the divide-and-conquer approach , 2018 .

[18]  Edris Ebrahimzadeh,et al.  Simulation of transient gas flow using the orthogonal collocation method , 2012 .

[19]  Mahmood Farzaneh-Gord,et al.  Response of natural gas distribution pipeline networks to ambient temperature variation (unsteady simulation , 2018 .

[20]  Andrzej J. Osiadacz,et al.  Comparison of isothermal and non-isothermal pipeline gas flow models , 2001 .

[21]  Enrico Zio,et al.  Dynamic Surrogate Modeling for Multistep-ahead Prediction of Multivariate Nonlinear Chemical Processes , 2020, Industrial & Engineering Chemistry Research.

[22]  K. S. Chapman,et al.  Nonisothermal Transient Flow in Natural Gas Pipeline , 2008 .

[23]  Morteza Behbahani-Nejad,et al.  The accuracy and efficiency of a reduced-order model for transient flow analysis in gas pipelines , 2010 .

[24]  D. G. Papanikas,et al.  Transient gas flow simulation using an Adaptive Method of Lines , 2003 .

[25]  Tatsuhiko Kiuchi,et al.  An implicit method for transient gas flows in pipe networks , 1994 .

[26]  Hesam Ahmadian Behrooz,et al.  Modeling and state estimation for gas transmission networks , 2015 .

[27]  Andrzej J. Osiadacz Comparison of numerical methods for steady-state simulation of gas networks , 1988 .

[28]  José L. Risco-Martín,et al.  Modeling and simulation of a gas distribution pipeline network , 2009 .

[29]  Robin Smith,et al.  Development of model predictive control system using an artificial neural network: A case study with a distillation column , 2020 .

[30]  Shweta Singh,et al.  White-box Machine learning approaches to identify governing equations for overall dynamics of manufacturing systems: A case study on distillation column , 2021 .

[31]  Esmaeel Khanmirza,et al.  Design of a neural network based predictive controller for natural gas pipelines in transient state , 2019 .

[32]  Junyang Zhou,et al.  Simulation of transients in natural gas pipelines using hybrid TVD schemes , 2000 .

[33]  Lei He,et al.  Hybrid method based on particle filter and NARX for real-time flow rate estimation in multi-product pipelines , 2020 .

[34]  Peter Tiño,et al.  Learning long-term dependencies in NARX recurrent neural networks , 1996, IEEE Trans. Neural Networks.