Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers.

A high speed physical random bit generator is applied for the first time to a gigahertz clocked quantum key distribution system. Random phase-modulation in a differential-phase-shift quantum key distribution (DPS-QKD) system is performed using a 1-Gbps random bit signal which is generated by a physical random bit generator with chaotic semiconductor lasers. Stable operation is demonstrated for over one hour, and sifted keys are successfully generated at a rate of 9.0 kbps with a quantum bit error rate of 3.2% after 25-km fiber transmission.

[1]  Hiroki Takesue,et al.  100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. , 2006, Optics express.

[2]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[3]  W. T. Holman,et al.  An integrated analog/digital random noise source , 1997 .

[4]  Trevor Mudge,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2008, IEEE J. Solid State Circuits.

[5]  Ada Fort,et al.  Very High-Speed True Random Noise Generator , 2000 .

[6]  Yoshihisa Yamamoto,et al.  Differential-phase-shift quantum key distribution using coherent light , 2003 .

[7]  Hoi-Kwong Lo,et al.  Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states , 2007, Quantum Inf. Comput..

[8]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[9]  B. Baek,et al.  Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. , 2008, Optics express.

[10]  Kai Wen,et al.  Unconditional security of single-photon differential phase shift quantum key distribution. , 2008, Physical review letters.

[11]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[12]  T Honjo,et al.  Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors. , 2007, Optics express.

[13]  Yoshihisa Yamamoto,et al.  Security of differential-phase-shift quantum key distribution against individual attacks , 2005, quant-ph/0508112.

[14]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[15]  N. Gisin,et al.  Low jitter up-conversion detectors for telecom wavelength GHz QKD , 2006 .

[16]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[17]  A. R. Dixon,et al.  Gigahertz quantum key distribution with InGaAs avalanche photodiodes , 2008 .

[18]  Toyohiro Tsurumaru Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol , 2007 .

[19]  T. Honjo,et al.  Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. , 2004, Optics letters.

[20]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.