Set-based particle swarm optimization applied to the multidimensional knapsack problem

Particle swarm optimization algorithms have been successfully applied to discrete/valued optimization problems. However, in many cases the algorithms have been tailored specifically for the problem at hand. This paper proposes a generic set-based particle swarm optimization algorithm for use in discrete-valued optimization problems that can be formulated as set-based problems. A detailed sensitivity analysis of the parameters of the algorithm is conducted. The performance of the proposed algorithm is then compared against three other discrete particle swarm optimization algorithms from literature using the multidimensional knapsack problem and is shown to statistically outperform the existing algorithms.

[1]  Chunguang Zhou,et al.  Fuzzy discrete particle swarm optimization for solving traveling salesman problem , 2004, The Fourth International Conference onComputer and Information Technology, 2004. CIT '04..

[2]  Min Kong,et al.  Apply the Particle Swarm Optimization to the Multidimensional Knapsack Problem , 2006, ICAISC.

[3]  Labed Said,et al.  A Modified Hybrid Particle Swarm Optimization Algorithm for Multidimensional Knapsack Problem , 2011 .

[4]  Jingqi Fu,et al.  A Novel Probability Binary Particle Swarm Optimization Algorithm and Its Application , 2008, J. Softw..

[5]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Lamia Benameur,et al.  A new discrete particle swarm model for the frequency assignment problem , 2009, 2009 IEEE/ACS International Conference on Computer Systems and Applications.

[7]  Shuyuan Yang,et al.  A quantum particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  Guo-Li Shen,et al.  Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[9]  Jürgen Bock,et al.  Discrete particle swarm optimisation for ontology alignment , 2012, Inf. Sci..

[10]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[11]  Ling Wang,et al.  A Novel PSO-Inspired Probability-based Binary Optimization Algorithm , 2008, 2008 International Symposium on Information Science and Engineering.

[12]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[13]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[14]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[15]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[16]  Minrui Fei,et al.  Coordinated controller tuning of a boiler turbine unit with new binary particle swarm optimization algorithm , 2011, Int. J. Autom. Comput..

[17]  Ajith Abraham,et al.  An Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization Algorithm for Solving Quadratic Assignment Problems , 2007, J. Univers. Comput. Sci..

[18]  Mehmet Kuzu,et al.  Dynamic planning approach to automated web service composition , 2010, Applied Intelligence.

[19]  Georgii Gens,et al.  Complexity of approximation algorithms for combinatorial problems: a survey , 1980, SIGA.

[20]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  Christian Veenhuis,et al.  A Set-Based Particle Swarm Optimization Method , 2008, PPSN.

[22]  Ajith Abraham,et al.  Scheduling Jobs on Computational Grids Using Fuzzy Particle Swarm Algorithm , 2006, KES.

[23]  Andries P. Engelbrecht,et al.  A Generic Set-Based Particle Swarm Optimization Algorithm , 2011 .

[24]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[25]  Wei Pang,et al.  Modified particle swarm optimization based on space transformation for solving traveling salesman problem , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[26]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[27]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[28]  Albert Corominas,et al.  Solving the Response Time Variability Problem by means of metaheuristics , 2006, CCIA.

[29]  Li-Yeh Chuang,et al.  Feature Selection using PSO-SVM , 2007, IMECS.

[30]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[31]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[32]  Minrui Fei,et al.  Determination of the PID controller parameters by Modified Binary Particle Swarm Optimization algorithm , 2010, 2010 Chinese Control and Decision Conference.

[33]  Ling Wang,et al.  An Effective PSO-Based Hybrid Algorithm for Multiobjective Permutation Flow Shop Scheduling , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[34]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[35]  S.G. Ponnambalam,et al.  A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[36]  Chunguang Zhou,et al.  Particle swarm optimization for traveling salesman problem , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[37]  Jigui Sun,et al.  An Improved Discrete Particle Swarm Optimization Algorithm for TSP , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[38]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[39]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[40]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[41]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[42]  L Hongbo,et al.  An Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization Algorithm for Solving Quadratic Assignment Problems , 2007 .

[43]  Heitor Silvério Lopes,et al.  Particle Swarm Optimization for the Multidimensional Knapsack Problem , 2007, ICANNGA.

[44]  Andries Petrus Engelbrecht,et al.  Determining RNA Secondary Structure using Set-based Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[45]  Bo Liu,et al.  An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[47]  Mehmet Fatih Tasgetiren,et al.  Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing Problem , 2004, ANTS Workshop.

[48]  A. Abraham,et al.  Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm , 2010, Future Gener. Comput. Syst..

[49]  N. Franken,et al.  Combining particle swarm optimisation with angle modulation to solve binary problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[50]  Andries Petrus Engelbrecht,et al.  A fuzzy particle swarm optimization algorithm for computer communication network topology design , 2010, Applied Intelligence.

[51]  Bin Shen,et al.  Heuristic Information Based Improved Fuzzy Discrete PSO Method for Solving TSP , 2006, PRICAI.

[52]  Nelis Franken,et al.  Visual exploration of algorithm parameter space , 2009, 2009 IEEE Congress on Evolutionary Computation.

[53]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[54]  M. A. Khanesar,et al.  A novel binary particle swarm optimization , 2007, 2007 Mediterranean Conference on Control & Automation.

[55]  Xiao Liu,et al.  A Revised Discrete Particle Swarm Optimization for Cloud Workflow Scheduling , 2010, 2010 International Conference on Computational Intelligence and Security.

[56]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[57]  Maurice Clerc,et al.  Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem , 2004 .

[58]  Russell C. Eberhart,et al.  Evolutionary Computation Theory and Paradigms , 2001 .

[59]  Jun Zhang,et al.  Shape matching using fuzzy discrete particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[60]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[61]  Jun Zhang,et al.  A novel discrete particle swarm optimization to solve traveling salesman problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[62]  Hongwei Liu,et al.  Application of Improved Discrete Particle Swarm Algorithm in Partner Selection of Virtual Enterprise , 2006 .

[63]  Tom Fearn,et al.  Particle Swarm Optimisation , 2014 .