2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches

[1]  Lei Shen,et al.  2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches , 2019, Scientific Data.

[2]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[3]  Marcus W. Newrock,et al.  Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms , 2018, Scientific Data.

[4]  Jia Shi,et al.  InSe monolayer: synthesis, structure and ultra-high second-harmonic generation , 2018 .

[5]  E. Kaxiras,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[6]  A. Dimoulas,et al.  Massless Dirac Fermions in ZrTe2 Semimetal Grown on InAs(111) by van der Waals Epitaxy. , 2018, ACS nano.

[7]  Juan Jiang,et al.  Persistent Charge-Density-Wave Order in Single-Layer TaSe2. , 2018, Nano letters.

[8]  Xinsheng Wang,et al.  Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. , 2017, Nanoscale.

[9]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[10]  E. Reed,et al.  Structural phase transition in monolayer MoTe2 driven by electrostatic doping , 2017, Nature.

[11]  Xiangfeng Duan,et al.  Synthesis of 2D Layered BiI3 Nanoplates, BiI3 /WSe2 van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. , 2017, Small.

[12]  Peng Yu,et al.  PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. , 2017, Journal of the American Chemical Society.

[13]  Chen Liu,et al.  Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate , 2017 .

[14]  Li Gao Flexible Device Applications of 2D Semiconductors. , 2017, Small.

[15]  Kamal Choudhary,et al.  High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory , 2017, Scientific Reports.

[16]  Eric Pop,et al.  Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2. , 2017, Nano letters.

[17]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[18]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[19]  Gowoon Cheon,et al.  Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures. , 2017, Nano letters.

[20]  Wei Zheng,et al.  Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting , 2017 .

[21]  Alessandro Fortunelli,et al.  Nanoscale Domain Structure and Defects in a 2-D WO3 Layer on Pd(100) , 2016 .

[22]  Liang Li,et al.  Ternary Ta2NiSe5 Flakes for a High‐Performance Infrared Photodetector , 2016 .

[23]  Chen Liu,et al.  Tunable Electronic Structures in Wrinkled 2D Transition‐Metal‐Trichalcogenide (TMT) HfTe3 Films , 2016 .

[24]  Kaci L. Kuntz,et al.  Experimental Demonstration of an Electride as a 2D Material. , 2016, Journal of the American Chemical Society.

[25]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[26]  Hong Zhang,et al.  Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T − X N 2 ( X = S , Se , and Te ) , 2016 .

[27]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[28]  R. Hennig,et al.  Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. , 2016, Physical review letters.

[29]  Andrés Cantarero,et al.  Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers , 2016 .

[30]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[31]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[32]  Ashutosh Tiwari,et al.  2D Tin Monoxide—An Unexplored p‐Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors , 2016 .

[33]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[34]  Lianzhou Wang,et al.  Recent advances in 2D materials for photocatalysis. , 2016, Nanoscale.

[35]  B. Lotsch,et al.  Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets. , 2016, Nano letters.

[36]  Peng Yu,et al.  Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2 , 2016, Advanced materials.

[37]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[38]  Y. Sun,et al.  Spin dynamics, electronic and thermal transport properties of two-dimensional CrPS4 single crystal , 2016, 1602.08174.

[39]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[40]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[41]  Kai Xu,et al.  Ultrasensitive Phototransistors Based on Few‐Layered HfS2 , 2015, Advanced materials.

[42]  Sheng Liu,et al.  Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide , 2015, Nature Communications.

[43]  Bing Li,et al.  High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. , 2015, Journal of the American Chemical Society.

[44]  Oleg Kolosov,et al.  Photoluminescence of two-dimensional GaTe and GaSe films , 2015 .

[45]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[46]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[47]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[48]  Xinsheng Wang,et al.  Controlled Synthesis of ZrS2 Monolayer and Few Layers on Hexagonal Boron Nitride. , 2015, Journal of the American Chemical Society.

[49]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[50]  Yingying Wu,et al.  van der Waals epitaxial growth of atomically thin Bi₂Se₃ and thickness-dependent topological phase transition. , 2015, Nano letters.

[51]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[52]  Moon J. Kim,et al.  HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. , 2015, ACS nano.

[53]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[54]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[55]  Motohiko Ezawa,et al.  Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems , 2014, 1410.5166.

[56]  Hiroyuki Hirayama,et al.  Epitaxial growth of silicene on ultra-thin Ag(111) films , 2014 .

[57]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[58]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[59]  Huimin Zhao,et al.  Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation , 2014 .

[60]  Sefaattin Tongay,et al.  Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. , 2014, Nanoscale.

[61]  M. E. Dávila,et al.  Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene , 2014, 1406.2488.

[62]  Jing Wang,et al.  Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin Hall insulator , 2014, 1402.4433.

[63]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[64]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[65]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[66]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[67]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[68]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[69]  Wolfgang Windl,et al.  Stability and exfoliation of germanane: a germanium graphane analogue. , 2013, ACS nano.

[70]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[71]  Tuti Mariana Lim,et al.  Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. , 2013, Nanoscale.

[72]  Ting Zhang,et al.  Single-layer single-crystalline SnSe nanosheets. , 2013, Journal of the American Chemical Society.

[73]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[74]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[75]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[76]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[77]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[78]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[79]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[80]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[81]  W. Dang,et al.  Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. , 2010, Nano letters.

[82]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[83]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[85]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[86]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[87]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[88]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[89]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[90]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[91]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[92]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[93]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[94]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[95]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[96]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[97]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[98]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[99]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[100]  Kristin A. Persson,et al.  an open computational database of two-dimensional materials from top-down and bottom-up approaches. , 2019 .

[101]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[102]  Kai Xiao,et al.  Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material , 2016 .