Hypogenetic chaotic jerk flows

Abstract Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications.

[1]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[2]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[3]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[4]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[5]  Julien Clinton Sprott,et al.  Generalization of the simplest autonomous chaotic system , 2011 .

[6]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[7]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[8]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[9]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[10]  Julien Clinton Sprott,et al.  Multistability in a Butterfly Flow , 2013, Int. J. Bifurc. Chaos.

[11]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[12]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[13]  Julien Clinton Sprott,et al.  Elementary chaotic flow , 1999 .

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[16]  Julien Clinton Sprott,et al.  A New Piecewise Linear Hyperchaotic Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[18]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[19]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[20]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .

[21]  Julien Clinton Sprott,et al.  A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.