Adaptive Intrusion Detection based on Boosting and

[1]  Suman Ahmmed,et al.  Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering , 2010 .

[2]  Dewan Md. Farid,et al.  Attribute Weighting with Adaptive NBTree for Reducing False Positives in Intrusion Detection , 2010, ArXiv.

[3]  Dewan Md. Farid,et al.  Combining Naive Bayes and Decision Tree for Adaptive Intrusion Detection , 2010, ArXiv.

[4]  Dewan Md. Farid,et al.  Attacks classification in adaptive intrusion detection using decision tree , 2010 .

[5]  Dewan Md. Farid,et al.  Anomaly Network Intrusion Detection Based on Improved Self Adaptive Bayesian Algorithm , 2010, J. Comput..

[6]  Jérôme Darmont,et al.  Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification , 2009 .

[7]  Manas Ranjan Patra,et al.  Semi-Naïve Bayesian Method for Network Intrusion Detection System , 2009, ICONIP.

[8]  Ester Yen,et al.  Data mining-based intrusion detectors , 2009, Expert Syst. Appl..

[9]  Gabriel Maciá-Fernández,et al.  Anomaly-based network intrusion detection: Techniques, systems and challenges , 2009, Comput. Secur..

[10]  M.Z. Rahman,et al.  Learning intrusion detection based on adaptive bayesian algorithm , 2008, 2008 11th International Conference on Computer and Information Technology.

[11]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[12]  Frédéric Cuppens,et al.  Detecting Known and Novel Network Intrusions , 2006, SEC.

[13]  Tadeusz Pietraszek,et al.  Defending Against Injection Attacks Through Context-Sensitive String Evaluation , 2005, RAID.

[14]  Xin Xu,et al.  An Adaptive Network Intrusion Detection Method Based on PCA and Support Vector Machines , 2005, ADMA.

[15]  Ajith Abraham,et al.  Feature deduction and ensemble design of intrusion detection systems , 2005, Comput. Secur..

[16]  Andrew H. Sung,et al.  Intrusion detection using an ensemble of intelligent paradigms , 2005, J. Netw. Comput. Appl..

[17]  Zied Elouedi,et al.  Naive Bayes vs decision trees in intrusion detection systems , 2004, SAC '04.

[18]  Salvatore J. Stolfo,et al.  Adaptive Intrusion Detection: A Data Mining Approach , 2000, Artificial Intelligence Review.

[19]  Ajay Joshi,et al.  Applying the wrapper approach for auto discovery of under-sampling and over-sampling percentages on skewed datasets , 2004 .

[20]  Lih-Chyau Wuu,et al.  Building intrusion pattern miner for snort network intrusion detection system , 2003, IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings..

[21]  Yuxin Ding,et al.  Host-based intrusion detection using dynamic and static behavioral models , 2003, Pattern Recognit..

[22]  Xiaoning Zhang,et al.  Data Mining for Network Intrusion Detection: A Comparison of Alternative Methods , 2001, Decis. Sci..

[23]  Sushil Jajodia,et al.  ADAM: a testbed for exploring the use of data mining in intrusion detection , 2001, SGMD.

[24]  Salvatore J. Stolfo,et al.  Using artificial anomalies to detect unknown and known network intrusions , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[25]  Sushil Jajodia,et al.  Detecting Novel Network Intrusions Using Bayes Estimators , 2001, SDM.

[26]  Salvatore J. Stolfo,et al.  A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions , 2000, Recent Advances in Intrusion Detection.

[27]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[28]  S. E. Smaha Haystack: an intrusion detection system , 1988, [Proceedings 1988] Fourth Aerospace Computer Security Applications.

[29]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1987, IEEE Transactions on Software Engineering.