Computational studies of pattern formation in Turing systems

This thesis is an analytical and computational treatment of Turing models, which are coupled partial differential equations describing the reaction and diffusion behavior of chemicals. Under particular conditions, such systems are capable of generating stationary chemical patterns of finite characteristic wave lengths even if the system starts from an arbitrary initial configuration. The characteristics of the resulting dissipative patterns are determined intrinsically by the reaction and diffusion rates of the chemicals, not by external constraints. Turing patterns have been shown to have counterparts in natural systems and thus Turing systems could provide a plausible way to model the mechanisms of biological growth. Turing patterns grow due to diffusion-driven instability as a result of infinitesimal perturbations around the stationary state of the model and exist only under non-equilibrium conditions. Turing systems have been studied using chemical experiments, mathematical tools and numerical simulations. In this thesis a Turing model called the Barrio-Varea-Aragon-Maini (BVAM) model is studied by employing both analytical and numerical methods. In addition to the pattern formation in two-dimensional domains, also the formation of three-dimensional structures is studied extensively. The scaled form of the BVAM model is derived from first principles. The model is then studied using the standard linear stability analysis, which reveals the parameter sets corresponding to a Turing instability and the resulting unstable wave modes. Then nonlinear bifurcation analysis is carried out to find out the stability of morphologies induced by two-dimensional hexagonal symmetry and various three-dimensional symmetries (SC, BCC, FCC). This is realized by employing the center manifold reduction technique to obtain the amplitude equations describing the reduced chemical dynamics on the center manifold. The main numerical results presented in this thesis include the study of the Turing pattern selection in the presence of bistability, and the study of the structure selection in three-dimensional Turing systems depending on the initial configuration. Also, the work on the effect of numerous constraints, such as random noise, changes in the system parameters, thickening domain and multistability on Turing pattern formation brings new insight concerning the state selection problem of non-equilibrium physics.

[1]  Teemu Leppänen,et al.  Modeling language competition , 2004 .

[2]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[3]  Arjen van Ooyen,et al.  Competition in the development of nerve connections: a review of models , 2001 .

[4]  L. Pismen Pattern selection at the bifurcation point , 1980 .

[5]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[6]  B. Hasslacher,et al.  Molecular Turing structures in the biochemistry of the cell. , 1993, Chaos.

[7]  A. R. Bishop,et al.  DYNAMICS OF VORTEX LINES IN THE THREE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION : INSTABILITY, STRETCHING, ENTANGLEMENT, AND HELICES , 1998 .

[8]  Teemu Leppänen,et al.  The Theory of Turing Pattern Formation , 2005 .

[9]  Irving R Epstein,et al.  Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. , 2003, Physical review letters.

[10]  E. Dulos,et al.  Standard and nonstandard Turing patterns and waves in the CIMA reaction , 1996 .

[11]  P K Maini,et al.  A two-dimensional numerical study of spatial pattern formation in interacting Turing systems , 1999, Bulletin of mathematical biology.

[12]  Irving R. Epstein,et al.  The Chemistry behind the First Experimental Chemical Examples of Turing Patterns , 1995 .

[13]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[14]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[15]  D. Tildesley,et al.  On the role of hydrodynamic interactions in block copolymer microphase separation , 1999 .

[16]  Stéphane Métens,et al.  Pattern selection in reaction-diffusion systems with competing bifurcations , 1996 .

[17]  G. Dewel,et al.  Dissipative structures and broken symmetry , 1981 .

[18]  Grégoire Nicolis,et al.  Introduction to Nonlinear Science: References , 1995 .

[19]  N. Ghoniem,et al.  Effects of glissile interstitial clusters on microstructure self-organization in irradiated materials , 2003 .

[20]  Kimmo Kaski,et al.  A new dimension to Turing patterns , 2002, cond-mat/0211283.

[21]  De Wit A,et al.  Twist grain boundaries in three-dimensional lamellar Turing structures. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[23]  Martin Grant,et al.  Defects, Order, and Hysteresis in Driven Charge-Density Waves , 1999 .

[24]  Edgar Knobloch,et al.  Pattern formation in the three-dimensional reaction-diffusion systems , 1999 .

[25]  Eshel Ben-Jacob,et al.  Generic modeling of chemotactic based self-wiring of neural networks , 1998, Neural Networks.

[26]  Ehud Meron,et al.  The Dynamics of Curved Fronts: Beyond Geometry , 1996, patt-sol/9611002.

[27]  Anne C. Skeldon,et al.  Stability results for steady, spatially periodic planforms , 1995, patt-sol/9509004.

[28]  E. Dulos,et al.  Stationary Turing patterns versus time-dependent structures in the chlorite-iodide-malonic acid reaction , 1992 .

[29]  Alan C. Newell,et al.  ORDER PARAMETER EQUATIONS FOR PATTERNS , 1993 .

[30]  A M Zhabotinsky,et al.  Resonant suppression of Turing patterns by periodic illumination. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Daniel Walgraef,et al.  Spatio-temporal pattern formation , 1996 .

[32]  Andrew J. Wathen,et al.  A model for colour pattern formation in the butterfly wing of Papilio dardanus , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Nikolas Provatas,et al.  Nucleation, Growth, and Scaling in Slow Combustion , 1997, cond-mat/9701209.

[34]  K. Showalter,et al.  Critical slowing down in the bistable iodate-arsenic(III) reaction , 1983 .

[35]  P. Gray,et al.  Sustained oscillations and other exotic patterns of behavior in isothermal reactions , 1985 .

[36]  Hans-Georg Purwins,et al.  HEXAGON STRUCTURES IN A TWO-DIMENSIONAL DC-DRIVEN GAS DISCHARGE SYSTEM , 1998 .

[37]  Zoltán Noszticzius,et al.  Effect of Turing pattern indicators on CIMA oscillators , 1992 .

[38]  Andreas W. Liehr,et al.  The Generation of Dissipative Quasi-Particles near Turing’s Bifurcation in Three-Dimensional Reacting Diffusion Systems , 2001 .

[39]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[40]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[41]  G. Dewel,et al.  Reaction–Diffusion Patterns in Confined Chemical Systems , 2000 .

[42]  Alexander F. Schier,et al.  The zebrafish Nodal signal Squint functions as a morphogen , 2001, Nature.

[43]  A. Hunding Dissipative structures in reaction-diffusion systems: Numerical determination of bifurcations in the sphere , 1980 .

[44]  Kimmo Kaski,et al.  Dimensionality effects in Turing pattern formation , 2003 .

[45]  K. Elder,et al.  METASTABLE STATE SELECTION IN ONE-DIMENSIONAL SYSTEMS WITH A TIME-RAMPED CONTROL PARAMETER , 1998 .

[46]  Kramer,et al.  Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. , 1991, Physical review letters.

[47]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[48]  Hans-Georg Purwins,et al.  Hexagon and stripe Turing structures in a gas discharge system , 1996 .

[49]  I. Epstein,et al.  A chemical approach to designing Turing patterns in reaction-diffusion systems. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Milos Dolnik,et al.  Superlattice Turing structures in a photosensitive reaction-diffusion system. , 2003, Physical review letters.

[51]  T. K. Callahan,et al.  Symmetry-breaking bifurcations on cubic lattices , 1997 .

[52]  Jing Li,et al.  Systematic design of chemical oscillators. 82. Dynamical study of the chlorine dioxide-iodide open system oscillator , 1992 .

[53]  Milos Dolnik,et al.  Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. , 2002, Physical review letters.

[54]  Hysteresis in one-dimensional reaction-diffusion systems. , 2003, Physical review letters.

[55]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A + 2B → 3B; B → C , 1984 .

[56]  From quasi-2D to 3D Turing patterns in ramped systems , 1996 .

[57]  Stéphane Métens,et al.  Pattern selection in bistable systems , 1997 .

[58]  Anotida Madzvamuse,et al.  A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves , 2002, Bulletin of mathematical biology.

[59]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[60]  A. Mikhailov,et al.  Target patterns and pacemakers in reaction-diffusion systems , 2003 .

[61]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[62]  Patrick D. Weidman,et al.  The dynamics of patterns , 2000 .

[63]  M. Mimura,et al.  Reaction-diffusion modelling of bacterial colony patterns , 2000 .

[64]  Teemu Leppänen,et al.  Turing systems as models of complex pattern formation , 2004 .

[65]  Kenneth Showalter,et al.  Chemical waves and patterns , 1995 .

[66]  G. Dewel,et al.  Pattern selection and localized structures in reaction-diffusion systems , 1995 .

[67]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[68]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 65. Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid , 1990 .

[69]  John E. Pearson,et al.  Chemical pattern formation with equal diffusion coefficients , 1987 .

[70]  Zoltán Noszticzius,et al.  Spatial bistability of two-dimensional turing patterns in a reaction-diffusion system , 1992 .

[71]  G. Dewel,et al.  Reentrant hexagonal Turing structures , 1992 .

[72]  Andrew D Rutenberg,et al.  Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. , 2003, Physical review letters.

[73]  J. Langer,et al.  Pattern formation in nonequilibrium physics , 1999 .

[74]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[75]  Michael L. Kagan,et al.  New systems for pattern formation studies , 1992 .

[76]  J. Crawford Introduction to bifurcation theory , 1991 .

[77]  Irving R. Epstein,et al.  Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction , 1990 .

[78]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[79]  Swinney,et al.  Pattern formation in the presence of symmetries. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  J. Boissonade,et al.  Turing Patterns: From Myth to Reality , 1995 .

[81]  J. Boissonade,et al.  Numerical studies of Turing patterns selection in a two-dimensional system , 1992 .

[82]  Ole Jensen,et al.  Subcritical transitions to Turing structures , 1993 .

[83]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability , 1983 .

[84]  S. Liaw,et al.  Turing model for the patterns of lady beetles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  A. Zhabotinsky,et al.  Control of Turing Structures by Periodic Illumination , 1999 .

[86]  Critical Slowing Down on the Dynamics of a Bistable Reaction-Diffusion System in the Neighborhood of Its Critical Point , 1999 .

[87]  H. Meinhardt Models of biological pattern formation , 1982 .

[88]  T. K. Callahan,et al.  Long-wavelength instabilities of three-dimensional patterns. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  R. Engelhardt,et al.  EARLY BIOLOGICAL MORPHOGENESIS AND NONLINEAR DYNAMICS , 1995 .

[90]  L. Kramer,et al.  Amplitude equations for description of chemical reaction–diffusion systems , 2000 .

[91]  I. Epstein,et al.  RATE CONSTANTS FOR REACTIONS BETWEEN IODINE- AND CHLORINE-CONTAINING SPECIES : A DETAILED MECHANISM OF THE CHLORINE DIOXIDE/CHLORITE-IODIDE REACTION , 1996 .

[92]  Erik Mosekilde,et al.  Modelling the Dynamics of Biological Systems , 1995 .

[93]  P. Umbanhowar,et al.  Hexagons, kinks, and disorder in oscillated granular layers. , 1995, Physical review letters.

[94]  John E. Pearson,et al.  Turing patterns in an open reactor , 1988 .

[95]  Rafael A. Barrio,et al.  ROBUST SYMMETRIC PATTERNS IN THE FARADAY EXPERIMENT , 1997 .

[96]  John Harris,et al.  Handbook of mathematics and computational science , 1998 .

[97]  M. Howard,et al.  Dynamic compartmentalization of bacteria: accurate division in E. coli. , 2001, Physical review letters.

[98]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[99]  Spatial Correlations near Turing Instabilities: Criteria for Wavenumber Selection , 1999 .

[100]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[101]  Guy Dewel,et al.  Competition in ramped Turing structures , 1992 .

[102]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[103]  Rovinsky,et al.  Interaction of Turing and Hopf bifurcations in chemical systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[104]  Boissonade,et al.  Dynamics of Turing pattern monolayers close to onset. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[105]  Rolf Landauer,et al.  Inadequacy of entropy and entropy derivatives in characterizing the steady state , 1975 .

[106]  I. Aranson,et al.  Stability limits of traveling waves and the transition to spatiotemporal chaos in the complex Ginzburg-Landau equation , 1992 .

[107]  Henzler,et al.  Spatial pattern formation in a catalytic surface reaction: The facetting of Pt(110) in CO+O2. , 1990, Physical review letters.

[108]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[109]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[110]  G. Edwards,et al.  Forces for Morphogenesis Investigated with Laser Microsurgery and Quantitative Modeling , 2003, Science.

[111]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[112]  R. A. Barrioa,et al.  Size-dependent symmetry breaking in models for morphogenesis , 2002 .

[113]  Stephen L. Judd,et al.  Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse , 1998, patt-sol/9807002.

[114]  Jacques Demongeot,et al.  Biological Self-Organization by Way of Microtubule Reaction−Diffusion Processes† , 2002 .

[115]  Prof. Dr. Radivoj V. Krstić Human Microscopic Anatomy , 1991, Springer Berlin Heidelberg.

[116]  B. Nagorcka,et al.  From stripes to spots: prepatterns which can be produced in the skin by a reaction-diffusion system. , 1992, IMA journal of mathematics applied in medicine and biology.

[117]  Timothy J. Madden,et al.  Dynamic simulation of diblock copolymer microphase separation , 1998 .

[118]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[119]  P. Mandel,et al.  Spatiotemporal patterns and localized structures in nonlinear optics , 1997 .

[120]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[121]  G. Dewel,et al.  Fluctuations near nonequilibrium phase transitions to nonuniform states , 1980 .

[122]  J. Boissonade,et al.  Experimental Studies and Quantitative Modeling of Turing Patterns in the (Chlorine Dioxide, Iodine, Malonic Acid) Reaction , 1999 .

[123]  Tóth,et al.  Necessary condition of the Turing instability. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[124]  Teemu Leppänen,et al.  The Effect of Noise on Turing Patterns , 2003 .

[125]  Dynamic scaling and quasiordered states in the two-dimensional Swift-Hohenberg equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[126]  John E. Pearson,et al.  Self-replicating spots in reaction-diffusion systems , 1997 .

[127]  Mario Markus,et al.  Two types of performance of an isotropic cellular automaton: stationary (Turing) patterns and spiral waves , 1992 .

[128]  E. Dulos,et al.  Diffusive Instabilities and Chemical reactions , 2002, Int. J. Bifurc. Chaos.

[129]  A. Zhabotinsky,et al.  Spatial periodic forcing of Turing structures. , 2001, Physical review letters.

[130]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[131]  W. Saarloos Three basic issues concerning interface dynamics in nonequilibrium pattern formation , 1998, patt-sol/9801002.

[132]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[133]  P. Maini How the mouse got its stripes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[134]  P K Maini,et al.  Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[135]  B. Nagorcka,et al.  Wavelike isomorphic prepatterns in development. , 1989, Journal of theoretical biology.

[136]  R. A. Barrio,et al.  Confined Turing patterns in growing systems , 1997 .

[137]  J. Boissonade,et al.  Conventional and unconventional Turing patterns , 1992 .

[138]  De Wit A,et al.  Spatiotemporal dynamics near a codimension-two point. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[139]  F Schweitzer,et al.  Active random walkers simulate trunk trail formation by ants. , 1997, Bio Systems.

[140]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[141]  Valery Petrov,et al.  Resonant pattern formation in achemical system , 1997, Nature.

[142]  E. Meron,et al.  Diversity of vegetation patterns and desertification. , 2001, Physical review letters.

[143]  William H. Press,et al.  Numerical recipes in C , 2002 .

[144]  D. Schmitt-Landsiedel,et al.  Solid State Physics - Literature List , 2002 .

[146]  J. Murray How the Leopard Gets Its Spots. , 1988 .

[147]  E. Dulos,et al.  Turing Patterns in Confined Gel and Gel-Free Media , 1992 .

[148]  Toshiaki Tamamura,et al.  SEMICONDUCTOR NANOSTRUCTURES FORMED BY THE TURING INSTABILITY , 1997 .

[149]  J. Cartwright Labyrinthine Turing pattern formation in the cerebral cortex. , 2002, Journal of theoretical biology.

[150]  Indrani Bose,et al.  Effect of randomness and anisotropy on turing patterns in reaction-diffusion systems , 1997 .

[151]  Reynolds,et al.  Dynamics of self-replicating patterns in reaction diffusion systems. , 1994, Physical review letters.

[152]  A. Zhabotinsky,et al.  Turing pattern formation induced by spatially correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[154]  Guy Dewel,et al.  Three-dimensional dissipative structures in reaction-diffusion systems , 1992 .

[155]  D. G. Míguez,et al.  Transverse instabilities in chemical Turing patterns of stripes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[156]  Shigeru Kondo,et al.  Traveling stripes on the skin of a mutant mouse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Teemu Leppänen,et al.  Morphological transitions and bistability in Turing systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[158]  T. K. Callahan Turing patterns with O(3) symmetry , 2004 .

[159]  H. Meinhardt,et al.  Biological pattern formation: fmm basic mechanisms ta complex structures , 1994 .

[160]  P. Maini,et al.  Mathematical oncology: Cancer summed up , 2003, Nature.

[161]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[162]  P K Maini,et al.  Turing patterns with pentagonal symmetry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[163]  Raymond Kapral,et al.  Pattern formation in chemical systems , 1995 .