Going with the flow: a brief history of the study of the honeybee’s navigational ‘odometer’

Honeybees navigate to a food source using a sky-based compass to determine their travel direction, and an odometer to register how far they have travelled. The past 20 years have seen a renewed interest in understanding the nature of the odometer. Early work, pioneered by von Frisch and colleagues, hypothesized that travel distance is measured in terms of the energy that is consumed during the journey. More recent studies suggest that visual cues play a role as well. Specifically, bees appear to gauge travel distance by sensing the extent to which the image of the environment moves in the eye during the journey from the hive to the food source. Most of the evidence indicates that travel distance is measured during the outbound journey. Accumulation of odometric errors is restricted by resetting the odometer every time a prominent landmark is passed. When making detours around large obstacles, the odometer registers the total distance of the path that is flown to the destination, and not the “bee-line” distance. Finally, recent studies are revealing that bees can perform odometry in three dimensions.

[1]  Lars Chittka,et al.  The spectral input to honeybee visual odometry , 2003, Journal of Experimental Biology.

[2]  D. Roubik,et al.  A stingless bee can use visual odometry to estimate both height and distance , 2012, Journal of Experimental Biology.

[3]  M. Srinivasan,et al.  Honeybee navigation: distance estimation in the third dimension , 2007, Journal of Experimental Biology.

[4]  Alberto Ugolini Visual information acquired during displacement and initial orientation in Polistes gallicus (L.) (Hymenoptera, Vespidae) , 1987, Animal Behaviour.

[5]  L. Chittka,et al.  The influences of landmarks on distance estimation of honey bees , 1995, Animal Behaviour.

[6]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[7]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[8]  Walter Kaiser,et al.  Directionally selective motion detecting units in the optic lobe of the honeybee , 1970, Zeitschrift für vergleichende Physiologie.

[9]  J. Fellous,et al.  Visual Processing in the Central Bee Brain , 2009, The Journal of Neuroscience.

[10]  H. E. Esch,et al.  Waggle dances of honey bees , 2005, The Science of Nature.

[11]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[12]  Herbert Heran,et al.  Ein Beitrag zur Frage nach der Wahrnehmungsgrundlage der Entfernungsweisung der Bienen (Apis mellifica L.) , 2004, Zeitschrift für vergleichende Physiologie.

[13]  T. S Collett,et al.  Route following and the retrieval of memories in insects , 1993 .

[14]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[15]  Martin Egelhaaf,et al.  7 Novel Approaches to Visual Information Processing in Insects: Case Studies on Neuronal Computations in the Blowfly , 2005 .

[16]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[17]  Andrew B Barron,et al.  Optic flow informs distance but not profitability for honeybees , 2010, Proceedings of the Royal Society B: Biological Sciences.

[18]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[19]  T. Collett,et al.  Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.

[20]  F. G. Barth,et al.  A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances , 2003, Journal of Comparative Physiology A.

[21]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[22]  Mandyam V. Srinivasan,et al.  Honeybee navigation: properties of the visually driven `odometer' , 2003, Journal of Experimental Biology.

[23]  H. Esch,et al.  Honeybees use optic flow to measure the distance of a food source , 2005, Naturwissenschaften.

[24]  H. Schöne,et al.  Optokinetic speed control and estimation of travel distance in walking honeybees , 1996, Journal of Comparative Physiology A.

[25]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[26]  M. Srinivasan,et al.  Evidence for counting in insects , 2008, Animal Cognition.

[27]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals , 1998, The Journal of comparative neurology.

[28]  K. Frisch The dance language and orientation of bees , 1967 .

[29]  P. Dudchenko The hippocampus as a cognitive map , 2010 .

[30]  Lars Chittka,et al.  Can honey bees count landmarks? , 1995, Animal Behaviour.

[31]  P. H. Wells,et al.  Anatomy of a Controversy: The Question of a Language among Bees , 1990 .

[32]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[33]  M. R. Ibbotson,et al.  A MOTION-SENSITIVE VISUAL DESCENDING NEURONE IN APIS MELLIFERA MONITORING TRANSLATORY FLOW-FIELDS IN THE HORIZONTAL PLANE , 1991 .

[34]  Shaowu Zhang,et al.  Honeybee dances communicate distances measured by optic flow , 2001, Nature.

[35]  M. Srinivasan,et al.  Honeybee Odometry: Performance in Varying Natural Terrain , 2004, PLoS biology.

[36]  M V Srinivasan,et al.  Honeybee navigation: critically examining the role of the polarization compass , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  Randolf Menzel,et al.  Dominance of the odometer over serial landmark learning in honeybee navigation , 2010, Naturwissenschaften.

[38]  H. Heran,et al.  Beobachtungen über die Entfernungsmeldung der Sammelbienen , 1952, Zeitschrift für vergleichende Physiologie.

[39]  P H Wells,et al.  Honey Bee Recruitment to Food Sources: Olfaction or Language? , 1969, Science.

[40]  M. Ibbotson Evidence for velocity–tuned motion-sensitive descending neurons in the honeybee , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[42]  Jürgen Tautz,et al.  The Buzz about Bees , 2008 .

[43]  F. Goller,et al.  Honeybee waggle dances: the “energy hypothesis” and thermoregulatory behavior of foragers , 1994, Journal of Comparative Physiology B.

[44]  Mandyam V Srinivasan,et al.  Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. , 2011, Physiological reviews.

[45]  Friedrich Otto,et al.  Die Bedeutung des Rückfluges für die Richtungs- und Entfernungsangabe der Bienen , 1959, Zeitschrift für vergleichende Physiologie.

[46]  C. G. BUTLER,et al.  The Honeybee , 1942, Nature.