A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains

It is well known that in the case of a regular domain the solution of the time-harmonic Maxwell's equations allows a discretization by means of nodal finite elements: this is achieved by solving a regularized problem similar to the vector Helmholtz equation. The present paper deals with the same problem in the case of a nonconvex polyhedron. It is shown that a nodal finite element method does not approximate in general the solution to Maxwell's equations, but actually the solution to a neighboring variational problem involving a different function space. Indeed, the solution to Maxwell's equations presents singularities near the edges and corners of the domain that cannot be approximated by Lagrange finite elements.A new method is proposed involving the decomposition of the solution field into a regular part that can be treated numerically by nodal finite elements and a singular part that has to be taken into account explicitly. This singular field method is presented in various situations such as electri...

[1]  K Lemrabet An interface problem in a domain of R3 , 1978 .

[2]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[3]  Pavel Doktor,et al.  On the density of smooth functions in certain subspaces of Sobolev space , 1973 .

[4]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[5]  R. A. Nicolaides,et al.  Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints , 1997 .

[6]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[7]  P. Grisvard Alternative de Fredholm relative au problème de Dirichlet dans un polyèdre , 1975 .

[8]  E. Sonnendrücker,et al.  Resolution of the Maxwell equations in a domain with reentrant corners , 1998 .

[9]  P. Werner,et al.  ON THE EXTERIOR BOUNDARY VALUE PROBLEM OF PERFECT REFLECTION FOR STATIONARY ELECTROMAGNETIC WAVE FIELDS , 1963 .

[10]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[11]  Pekka Neittaanmäki,et al.  On different finite element methods for approximating the gradient of the solution to the Helmholtz equation , 1984 .

[12]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[13]  M. Moussaoui Espaces H (div, rot, Ω) dans un polygone plan , 1996 .

[14]  Serge Nicaise,et al.  Méthode de fonctions singulières pour problèmes aux limites avec singularités d'arêtes , 1994 .

[15]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[16]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[17]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[18]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  Ernst P. Stephan,et al.  Boundary integral equations for screen problems in IR3 , 1987 .

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  Martin Costabel,et al.  Singularités des équations de Maxwell dans un polyèdre , 1997 .

[23]  Franck Assous,et al.  Résolution des équations de Maxwell dans un domaine avec un coin rentrant , 1996 .

[24]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .