Numerical computation of derivatives in systems of delay differential equations

This article deals with initial value problem solutions in systems of delay differential equations and their derivatives with respect to parameters, where the parameters may occur in the initial value, the initial function, the right-hand-side function, and the delay. Sufficient conditions for differentiability are given, and an efficient and reliable method for the numerical computation is presented. Emphasis is laid on the treatment of problems with a discontinuity at the initial time, for which it is shown that jumps occur in the derivative at the propagated discontinuity times. An explicit expression for the size of the jumps in the derivative is given. Features are discussed of the implementation of COLSOL-DDE, an experimental solver for initial value problems in delay differential equations that also computes the derivatives of the solution. The performance of the developed method is demonstrated by a comparison to standard techniques for derivative approximation.

[1]  K. Gopalsamy,et al.  On delay differential equations with impulses , 1989 .

[2]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[3]  H. Voss,et al.  Parameter estimation in nonlinear delayed feedback systems from noisy data , 2002 .

[4]  Helmut Werner,et al.  Gewöhnliche Differentialgleichungen , 1986, Hochschultext.

[5]  Nicola Guglielmi,et al.  Open issues in devising software for the numerical solution of implicit delay differential equations , 2006 .

[6]  E. M. Cliff,et al.  Sensitivity analysis and parameter estimation for a model of Chlamydia Trachomatis infection , 2007 .

[7]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[8]  J. Hale,et al.  Differentiability with respect to delays , 1991 .

[9]  Wayne H. Enright,et al.  An efficient unified approach for the numerical solution of delay differential equations , 2010, Numerical Algorithms.

[10]  W. H. Enright,et al.  Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with interpolants , 1988 .

[11]  L. Shampine,et al.  Solving DDEs in MATLAB , 2001 .

[12]  Russian Federation. Numerical treatment of the parameter identification problem for delay-differential systems arising in immune response modelling , 1994 .

[13]  C. W. Gear,et al.  Smooth Numerical Solutions of Ordinary Differential Equations , 1983 .

[14]  G. A. Bocharovy A Report on the Use of Delay Di erential Equationsin Numerical Modelling in the BiosciencesC , 1999 .

[15]  L. Shampine Solving ODEs and DDEs with residual control , 2005 .

[16]  Xinzhi Liu,et al.  Existence, uniqueness and boundedness results for impulsive delay differential equations , 2000 .

[17]  M. Roussel The Use of Delay Differential Equations in Chemical Kinetics , 1996 .

[18]  Ferenc Hartung,et al.  Chapter 5 Functional Differential Equations with State-Dependent Delays: Theory and Applications , 2006 .

[19]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[20]  L. Collatz The numerical treatment of differential equations , 1961 .

[21]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[22]  S. Ruan,et al.  A delay-differential equation model of HIV infection of CD4(+) T-cells. , 2000, Mathematical biosciences.

[23]  C. Paul Designing efficient software for solving delay differential equations , 2000 .

[24]  Li Yan,et al.  The reliability/cost trade-off for a class of ODE solvers , 2009, Numerical Algorithms.

[25]  Richard Bellman,et al.  On the computational solution of differential-difference equations , 1961 .

[26]  Terje Hertzberg,et al.  Obtaining sensitivity information in dynamic optimization problems solved by the sequential approach , 1999 .

[27]  Hossein Zivaripiran,et al.  Efficient Simulation, Accurate Sensitivity Analysis and Reliable Parameter Estimation for Delay Differential Equations , 2010 .

[28]  Christopher T. H. Baker,et al.  Pitfalls in Parameter Estimation for Delay Differential Equations , 1997, SIAM J. Sci. Comput..

[29]  Hal L. Smith,et al.  An introduction to delay differential equations with applications to the life sciences / Hal Smith , 2010 .

[30]  Lawrence F. Shampine,et al.  Numerical Solution of Delay Differential Equations , 2009 .

[31]  Stephen A. Gourley,et al.  Dynamics of a delay differential model of hepatitis B virus , 2007 .

[32]  John C. Butcher The adaptation of STRIDE to delay differential equations , 1992 .

[33]  Yang Kuang,et al.  Dynamics of a delay differential equation model of hepatitis B virus infection , 2008, Journal of biological dynamics.

[34]  P. Hartman Ordinary Differential Equations , 1965 .

[35]  J. Albersmeyer Adjoint-based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems , 2010 .

[36]  Ernst Hairer,et al.  Implementing Radau IIA Methods for Stiff Delay Differential Equations , 2001, Computing.

[37]  Marino Zennaro,et al.  Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method , 1985 .

[38]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[39]  Wayne H. Enright,et al.  A delay differential equation solver based on a continuous Runge–Kutta method with defect control , 1997, Numerical Algorithms.

[40]  Irving R. Epstein,et al.  Differential delay equations in chemical kinetics: Some simple linear model systems , 1990 .

[41]  Christopher A. H. Paul,et al.  Developing a delay differential equation solver , 1992 .

[42]  Michael Ghil,et al.  A delay differential model of ENSO variability: parametric instability and the distribution of extremes , 2007, 0712.1312.

[43]  S. G. Kazantsev,et al.  Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions , 2007 .

[44]  W. H. Enright,et al.  Numerical solution of retarded and neutral delay differential equations using continuous runge-kutta methods , 1996 .

[45]  Kenneth W. Neves Automatic Integration of Functional Differential Equations: An Approach , 1975, TOMS.

[46]  K. Sneppen,et al.  Time delay as a key to apoptosis induction in the p53 network , 2002, cond-mat/0207236.

[47]  Ami Radunskaya,et al.  A delay differential equation model for tumor growth , 2003, Journal of mathematical biology.

[48]  Christopher T. H. Baker,et al.  Rival approaches to mathematical modelling in immunology , 2007 .

[49]  Ernst Hairer,et al.  Computing breaking points in implicit delay differential equations , 2008, Adv. Comput. Math..

[50]  Laurent Hascoët,et al.  TAPENADE 2.1 user's guide , 2004 .

[51]  Gregory Kozyreff,et al.  Delay differential equations for mode-locked semiconductor lasers. , 2004, Optics letters.

[52]  K. A. Murphy Estimation of time- and state-dependent delays and other parameters in functional differential equations , 1990 .

[53]  Shlomo Havlin,et al.  Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic. , 2002, Chaos.

[54]  Christopher T. H. Baker,et al.  The tracking of derivative discontinuities in systems of delay-differential equations , 1992 .

[55]  R. März Bulirsch, R./Grigorieff, R. D./Schröder, J. (Hrsg.), Numerical Treatment of Differential Equations. Proceedings, Oberwolfach, 1976. Lecture Notes in Mathematics 631. Berlin‐Heidelberg‐New York. Springer‐Verlag 1978. IX, 219 S., 12 Abb., DM 24,80. US $ 12.40 , 1979 .

[56]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[57]  W. Enright,et al.  Convergence Analysis of the Solution of Retarded and Neutral Delay Differential Equations by Continuous Numerical Methods , 1998 .

[58]  Ferenc Hartung,et al.  On Differentiability of Solutions with Respect to Parameters in State-Dependent Delay Equations , 1997 .

[59]  Lawrence F. Shampine,et al.  A friendly Fortran DDE solver , 2006 .

[60]  Gábor Orosz,et al.  Controlling biological networks by time-delayed signals , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Gábor Stépán,et al.  Multiple chatter frequencies in milling processes , 2003 .

[62]  G. I. Marchuk,et al.  Numerical solution by LMMs of stiff delay differential systems modelling an immune response , 1996 .

[63]  Christopher T. H. Baker,et al.  Experience of STRIDE applied to delay differential equations , 2000 .

[64]  Fathalla A. Rihan Sensitivity analysis for dynamic systems with time-lags , 2003 .

[65]  Jesper Oppelstrup,et al.  The RKFHB4 method for delay — Differential equations , 1978 .

[66]  Aimin Zhao,et al.  Asymptotic Behavior of Solutions of Impulsive Delay Differential Equations , 1996 .

[67]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[68]  Alfredo Bellen,et al.  Stability properties of interpolants for Runge-Kutta methods , 1988 .

[69]  Harvey Thomas Banks,et al.  Estimation of delays and other parameters in nonlinear functional differential equations , 1983 .

[70]  John L. Casti,et al.  Introduction to the theory and application of differential equations with deviating arguments , 1973 .

[71]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .