Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.

[1]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[2]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[3]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[4]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[5]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[6]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[7]  Jun Zhou,et al.  Carbon Nanoparticles on Carbon Fabric for Flexible and High‐Performance Field Emitters , 2011 .

[8]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[9]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[10]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[11]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[12]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[13]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[14]  Mao-Sung Wu,et al.  Highly Regulated Electrodeposition of Needle-Like Manganese Oxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors , 2010 .

[15]  Xiaogang Zhang,et al.  Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors , 2009 .

[16]  Ning Pan,et al.  Supercapacitors using carbon nanotubes films by electrophoretic deposition , 2006 .

[17]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[18]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[19]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[20]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[21]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[22]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[23]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[24]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[25]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[26]  Gil S. Lee,et al.  Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices. , 2011, Nano letters.

[27]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[28]  Jun Zhang,et al.  Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. , 2011, ACS nano.

[29]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[30]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[31]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[32]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[33]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[34]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[35]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[36]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[37]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[38]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.