Index of extraction of water surfaces from Landsat 7 ETM+ images

The aim of this study was to develop an index of water surfaces (IWS) for separating the water surfaces from other types of land use, by using the images of Landsat 7 ETM+. The index was applied on four areas characterized by different types of land use from different regions in Algeria. The first is from the center of Algeria (Landsat ETM+ scene: 195−36 acquired March 24, 2001); the second is from the east of Algeria (Landsat ETM+ scene: 193−35 acquired March 24, 2000); the third is from the west of Algeria (Landsat ETM+ scene: 197−36 acquired February 16, 2000); and the fourth is from the south of Algeria (Landsat ETM + scene: 197−43 acquired February 16, 2000). The results showed that the application of the IWS on the different tested areas can distinguish clearly the surface water from the other land use (basin dams, wadis, Sebkha, and Chott). These findings indicated that this index can be used in the mapping of the water surfaces.

[1]  Sandra Ardoin-Bardin,et al.  Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne , 2004 .

[2]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[3]  Claudia M. Castaneda,et al.  Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods , 1998 .

[4]  G. Bidoglio,et al.  Chemistry of aquatic systems : local and global perspectives , 1994 .

[5]  Juan Herrero,et al.  Facies identification within the playa-lakes of the Monegros desert, Spain, from field and satellite data , 2005 .

[6]  Stefan Sommer,et al.  Multivariate Analysis of Laboratory Spectra for the Assessment of Soil Development and Soil Degradation in the Southern Apennines (Italy) , 2000 .

[7]  S. Guha,et al.  Hydrogeomorphological mapping in ground water exploration using remotely sensed data — a case study in keonjhar district, orissa , 1997 .

[8]  B. Gao,et al.  Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data , 1995 .

[9]  Mario A. Gomarasca,et al.  Basics of geomatics , 2009 .

[10]  James K. Crowley,et al.  Mapping playa evaporite minerals with AVIRIS data: a first report from Death Valley, California , 1993 .

[11]  Ruisong Xu,et al.  Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions , 2009, Environmental monitoring and assessment.

[12]  Ghassem R. Asrar,et al.  Theory and applications of optical remote sensing. , 1989 .

[13]  E. R. Stoner,et al.  REFLECTANCE PROPERTIES OF SOILS , 1986 .

[14]  V. Desai,et al.  Morphometric analysis of the upper catchment of Kosi River using GIS techniques , 2013, Arabian Journal of Geosciences.

[15]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[16]  Robert G. Bryant,et al.  Validated linear mixture modelling of Landsat TM data for mapping evaporite minerals on a playa surface: methods and applications , 1996 .

[17]  J. Hill Spectral Properties of Soils and the Use of Optical Remote Sensing Systems for Soil Erosion Mapping , 1994 .

[18]  D. Rothery,et al.  Remote sensing of evaporite mineral zonation in salt flats (salars) , 1989 .

[19]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[20]  M. Suzen,et al.  Mapping evaporate minerals by ASTER , 2011 .

[21]  M. Bauer,et al.  Spectral inputs to crop identification and condition assessment , 1985, Proceedings of the IEEE.

[22]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[23]  S. Hook Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with , 1996 .

[24]  J. Peñuelas,et al.  The reflectance at the 950–970 nm region as an indicator of plant water status , 1993 .

[25]  K. Baier,et al.  Analysis of urban growth using Landsat TM/ETM data and GIS—a case study of Hyderabad, India , 2013, Arabian Journal of Geosciences.

[26]  Pablo J. Zarco-Tejada,et al.  Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Susan L. Ustin,et al.  Remotely sensed estimates of crop water demand , 2004, SPIE Optics + Photonics.

[28]  Tsehaie Woldai,et al.  International Journal of Applied Earth Observation and Geoinformation Hyperspectral Remote Sensing of Evaporate Minerals and Associated Sediments in Lake Magadi Area, Kenya , 2022 .

[29]  H. Ghrefat,et al.  Spectral Analysis of Multispectral Landsat 7 ETM + and ASTER Data for Mapping Land Cover at Qurayah Sabkha, Northern Saudi Arabia , 2013, Journal of the Indian Society of Remote Sensing.

[30]  Zhijun Ma,et al.  Waterbird Population Changes in the Wetlands at Chongming Dongtan in the Yangtze River Estuary, China , 2009, Environmental management.

[31]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[32]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[33]  Philip C. Goodell,et al.  Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[34]  J. Peñuelas,et al.  Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) , 1997 .

[35]  K. Shepherd,et al.  Global soil characterization with VNIR diffuse reflectance spectroscopy , 2006 .

[36]  S. Ustin Remote sensing for natural resource management and environmental monitoring , 2004 .

[37]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[38]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .