Perception auditive et langage : imagerie fonctionnelle du cortex auditif sensible au langage

RESUME Les premieres etapes corticales de la perception auditive du langage mettent en jeu de maniere bilaterale le cortex auditif temporal superieur comme en temoigne l’existence de la surdite verbale pure. Mais, du fait de la rarete de ce syndrome, la localisation anatomique precise et le role fonctionnel des regions temporales impliquees dans ce type de perception restent mal connus. L’imagerie fonctionnelle en tomographie par emission de positons et en resonance magnetique se developpe rapidement, ce qui a conduit a realiser ici une metaanalyse de plus de 40 etudes recentes ayant trait a la perception auditive. Cette meta-analyse a d’abord permis de definir dans l’espace stereotaxique de Talairach les limites anatomiques precises du cortex auditif sensible au langage. Cette structure s’etend dans les deux hemispheres sur plus de 4 cm dans le gyrus temporal superieur de part et d’autre du gyrus de Heschl, incluant vers le bas le sillon temporal superieur. Elle respecte des deux cotes le cortex auditif primaire et la branche montante du planum temporal. Le cortex auditif sensible au langage est par definition sensible au langage, mais il est aussi specifique puisqu’il n’est active ni par les tons purs, ni par les sons de l’environnement, ni par l’attention portee a des composants elementaires du son, tels que son intensite, sa hauteur, ou sa duree. En apparence, la specificite n’est pourtant pas complete, car cette region peut egalement etre activee par certains stimuli qui ne sont pas du langage. Mais dans ces derniers cas, les activations peuvent toujours etre rapportees aux mecanismes de la perception du langage, qu’il s’agisse de mecanismes de base d’elaboration de la scene auditive ou de l’elaboration/reconnaissance de « schemas vocaux ». Ceux-ci pourraient etre a la base de l’elaboration ulterieure des « schemas de paroles/modules phonetiques » propres au langage. Le cortex auditif sensible au langage integre dans ces « schemas vocaux », non seulement des informations auditives, mais aussi l’information visuelle du mouvement des levres dont on connait l’importance en matiere de perception du langage. Enfin, son activation est modulee par des influences « top-down » liees a la tâche effectuee par le sujet, qui pourraient refleter les contraintes anatomiques liees au type de reseau anatomofonctionnel cortical mis en jeu lors de l’execution de la tâche.

[1]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[2]  J B Poline,et al.  A cortical region sensitive to auditory spectral motion , 2000, Neuroreport.

[3]  Yasushi Miyashita,et al.  Functional Differentiation in the Human Auditory and Language Areas Revealed by a Dichotic Listening Task , 2000, NeuroImage.

[4]  R. Frackowiak,et al.  Differential recruitment of the speech processing system in healthy subjects and rehabilitated cochlear implant patients. , 2000, Brain : a journal of neurology.

[5]  E. T. Possing,et al.  Human temporal lobe activation by speech and nonspeech sounds. , 2000, Cerebral cortex.

[6]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[7]  Alan C. Evans,et al.  Auditory Attention to Space and Frequency Activates Similar Cerebral Systems , 1999, NeuroImage.

[8]  Alan C. Evans,et al.  Quantifying variability in the planum temporale: a probability map. , 1999, Cerebral cortex.

[9]  Alan C. Evans,et al.  Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions , 1999, Nature Neuroscience.

[10]  S. Pappatà,et al.  Cortical Networks Implicated in Semantic and Episodic Memory: Common or Unique? , 1998, Cortex.

[11]  V Bettinardi,et al.  The bilingual brain. Proficiency and age of acquisition of the second language. , 1998, Brain : a journal of neurology.

[12]  S. Posse,et al.  Intensity coding of auditory stimuli: an fMRI study , 1998, Neuropsychologia.

[13]  D R Medoff,et al.  Cerebral blood flow relationships associated with a difficult tone recognition task in trained normal volunteers. , 1998, Cerebral cortex.

[14]  Y. Samson,et al.  The Functional Anatomy of Sound Intensity Discrimination , 1998, The Journal of Neuroscience.

[15]  Y. Samson,et al.  Lateralization of Speech and Auditory Temporal Processing , 1998, Journal of Cognitive Neuroscience.

[16]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[17]  Alan C. Evans,et al.  Event-Related fMRI of the Auditory Cortex , 1998, NeuroImage.

[18]  J. Poline,et al.  Specialized auditory cortex area related to frequency modulation analysis : a “meta-analysis” PET study. , 1998, NeuroImage.

[19]  Alan C. Evans,et al.  Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[21]  S. Dehaene,et al.  Anatomical variability in the cortical representation of first and second language , 1997, Neuroreport.

[22]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[23]  Alan C. Evans,et al.  Time-Related Changes in Neural Systems Underlying Attention and Arousal During the Performance of an Auditory Vigilance Task , 1997, Journal of Cognitive Neuroscience.

[24]  E. Bullmore,et al.  Activation of auditory cortex during silent lipreading. , 1997, Science.

[25]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[26]  Edward T. Bullmore,et al.  A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain , 1996, Current Biology.

[27]  Karl J. Friston,et al.  Hearing and saying. The functional neuro-anatomy of auditory word processing. , 1996, Brain : a journal of neurology.

[28]  J. A. Frost,et al.  Function of the left planum temporale in auditory and linguistic processing , 1996, NeuroImage.

[29]  M. Ohyama,et al.  Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. , 1996, Stroke.

[30]  Daniel S. O'Leary,et al.  A Positron Emission Tomography Study of Binaurally and Dichotically Presented Stimuli: Effects of Level of Language and Directed Attention , 1996, Brain and Language.

[31]  A Engelien,et al.  The functional anatomy of recovery from auditory agnosia. A PET study of sound categorization in a neurological patient and normal controls. , 1995, Brain : a journal of neurology.

[32]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[33]  R. Woods,et al.  Recovery from wernicke's aphasia: A positron emission tomographic study , 1995, Annals of neurology.

[34]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[35]  P M Grasby,et al.  Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. , 1995, Brain : a journal of neurology.

[36]  C Hublet,et al.  Functional dissociations following bilateral lesions of auditory cortex. , 1994, Brain : a journal of neurology.

[37]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Steven L. Miller,et al.  Neurobiological Basis of Speech: A Case for the Preeminence of Temporal Processing , 1993, Annals of the New York Academy of Sciences.

[39]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[40]  Karl J. Friston,et al.  Distribution of cortical neural networks involved in word comprehension and word retrieval. , 1991, Brain : a journal of neurology.

[41]  D. P. Phillips,et al.  Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex , 1990, Behavioural Brain Research.

[42]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[43]  M. Posner,et al.  Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.

[44]  A M Liberman,et al.  A specialization for speech perception. , 1989, Science.

[45]  M. Posner,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[46]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[47]  D. Pisoni,et al.  Speech perception without traditional speech cues. , 1981, Science.

[48]  B. Schneuwly Le langage oral , 2000 .

[49]  D. Lancker,et al.  A Crosslinguistic PET Study of Tone Perception , 2000, Journal of Cognitive Neuroscience.

[50]  R. Burkard,et al.  The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. , 1999, Cerebral cortex.

[51]  Karl J. Friston,et al.  Erratum: Signal-, set- and movement-related activity in the human brain: An event-related fMRI study (Cerebral Cortex (January/February 1999) 9:1 (35- 49 , 1999 .

[52]  S. Petersen,et al.  PET activation of posterior temporal regions during auditory word presentation and verb generation. , 1996, Cerebral cortex.

[53]  P. McGuire,et al.  BRAIN IMAGING: Silent speechreading in the absence of scanner noise: an event-related fMRI study , 2022 .