Global paths of time-periodic solutions of the Benjamin–Ono equation connecting pairs of traveling waves

We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We then prove a theorem that gives the mapping from one bifurcation to its counterpart on the other side of the path and exhibits exact formulas for the time-periodic solutions on this path. The Fourier coefficients of these solutions are power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits (circles or epicycles) in the unit disk of the complex plane. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their analytic structure.

[1]  David J. Kaup,et al.  The Inverse Scattering Transform for the Benjamin–Ono Equation , 1998 .

[2]  A. Nakamura Bäcklund Transform and Conservation Laws of the Benjamin-Ono Equation , 1979 .

[3]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[4]  Ricardo Rosa,et al.  Chaos for a damped and forced KdV equation , 2004 .

[5]  K. Case Meromorphic solutions of the Benjamin-Ono equation , 1979 .

[6]  R. Glowinski,et al.  A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution , 2006 .

[7]  G. J. Cooper,et al.  Additive Runge-Kutta methods for stiff ordinary differential equations , 1983 .

[8]  Athanassios S. Fokas,et al.  The Inverse Scattering Transform for the Benjamin‐Ono Equation—A Pivot to Multidimensional Problems , 1983 .

[9]  J. Toland,et al.  Uniqueness and related analytic properties for the Benjamin-Ono equation —a nonlinear Neumann problem in the plane , 1991 .

[10]  Claudia Wulff,et al.  Bifurcation from relative periodic solutions , 2001, Ergodic Theory and Dynamical Systems.

[11]  M. Kruskal,et al.  A two-parameter Miura transformation of the Benjamin-Ono equation , 1979 .

[12]  David M. Ambrose,et al.  Well-Posedness of Vortex Sheets with Surface Tension , 2003, SIAM J. Math. Anal..

[13]  Randall J. LeVeque,et al.  On the interaction of nearly equal solitons in the KdV equation , 1987 .

[14]  L. Ahlfors Complex Analysis , 1979 .

[15]  A. Acrivos,et al.  Solitary internal waves in deep water , 1967, Journal of Fluid Mechanics.

[16]  J. Wilkening,et al.  Time-periodic solutions of the Benjamin-Ono equation , 2008 .

[17]  Jon Wilkening,et al.  An algorithm for computing Jordan chains and inverting analytic matrix functions , 2007 .

[18]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[19]  K. Case The Benjamin-Ono equation: A remarkable dynamical system , 1980 .

[20]  Hiroaki Ono Algebraic Solitary Waves in Stratified Fluids , 1975 .

[21]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[22]  Long Lee,et al.  Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation , 2008, J. Comput. Phys..

[23]  D. Viswanath Recurrent motions within plane Couette turbulence , 2006, Journal of Fluid Mechanics.

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  K. Case The N-soliton solution of the Benjamin-Ono equation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Y Matsuno,et al.  Interaction of the Benjamin-Ono solitons , 1980 .

[27]  R. Glowinski,et al.  Controllability Methods for the Computation of Time-Periodic Solutions; Application to Scattering , 1998 .

[28]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[29]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[30]  Divakar Viswanath,et al.  The fractal property of the Lorenz attractor , 2004 .

[31]  J. Satsuma,et al.  Periodic Wave and Rational Soliton Solutions of the Benjamin-Ono Equation , 1979 .

[32]  Pavel I. Plotnikov,et al.  Nash-Moser Theory for Standing Water Waves , 2001 .

[33]  Pavel I. Plotnikov,et al.  Standing Waves on an Infinitely Deep Perfect Fluid Under Gravity , 2005 .

[34]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[35]  S. Dobrokhotov,et al.  Multi-phase solutions of the Benjamin-Ono equation and their averaging , 1991 .

[36]  J. Wilkening An infinite branching hierarchy of time-periodic solutions of the Benjamin-Ono equation , 2008, 0811.4209.

[37]  Y. Matsuno New Representations of Multiperiodic and Multisoliton Solutions for a Class of Nonlocal Soliton Equations , 2004 .

[38]  Y. Matsuno Note on the Backlund Transformation of the Benjamin-Ono Equation , 1985 .

[39]  Kenneth R. Meyer,et al.  Symmetries and Integrals in Mechanics , 1973 .